hailong zhang, Zhang Yazhou, Meng ZHANG, Jie WANG, Jian Li, Xinchen YE, Xin Pei
{"title":"新疆110 m射电望远镜UWL信号信道化研究","authors":"hailong zhang, Zhang Yazhou, Meng ZHANG, Jie WANG, Jian Li, Xinchen YE, Xin Pei","doi":"10.1088/1674-4527/ad0427","DOIUrl":null,"url":null,"abstract":"Abstract Aiming at the subband division of UWL (Ultra-Wide wideband Low-frequency) signal (frequency coverage range :704-4032 MHz) of Xinjiang 110 m radio telescope (QTT), a scheme of ultra-wide bandwidth signal is designed. Firstly, we analyze the effect of different window functions such as Hanning window, Hamming window and Kaiser window on the performance of FIR (Finite Impulse Response) digital filters, and implement a CS-PFB (Critical Sampling Polyphase Filter Bank) based on the Hamming window FIR digital filter. Secondly, we generate 3328 MHz simulation data of ultra-wideband pulsar baseband in the frequency range of 704-4032 MHz using the UBPB (Ultra-wide Bandwitdh Pulsar Baseband data generation) algorithm based on the 400 MHz bandwidth pulsar baseband data obtained from Parkes CASPSR observations. Thirdly, we obtain 26 subbands of 128 MHz based on CS-PFB and the simulation data, and the pulse profile of each subband by coherent dispersion, integration, and folding. Finally, the phase of each subband pulse profile is aligned by non-coherent dedispersion, and to generate a broadband pulse profile, which is basically the same as the pulse profile obtained from the original data using DSPSR. The experimental results show that the scheme of QTT UWL reception system is feasible, and the proposed channel algorithm in this paper is effective.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"13 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on UWL signal channelization for Xinjiang 110 m radio telescope\",\"authors\":\"hailong zhang, Zhang Yazhou, Meng ZHANG, Jie WANG, Jian Li, Xinchen YE, Xin Pei\",\"doi\":\"10.1088/1674-4527/ad0427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Aiming at the subband division of UWL (Ultra-Wide wideband Low-frequency) signal (frequency coverage range :704-4032 MHz) of Xinjiang 110 m radio telescope (QTT), a scheme of ultra-wide bandwidth signal is designed. Firstly, we analyze the effect of different window functions such as Hanning window, Hamming window and Kaiser window on the performance of FIR (Finite Impulse Response) digital filters, and implement a CS-PFB (Critical Sampling Polyphase Filter Bank) based on the Hamming window FIR digital filter. Secondly, we generate 3328 MHz simulation data of ultra-wideband pulsar baseband in the frequency range of 704-4032 MHz using the UBPB (Ultra-wide Bandwitdh Pulsar Baseband data generation) algorithm based on the 400 MHz bandwidth pulsar baseband data obtained from Parkes CASPSR observations. Thirdly, we obtain 26 subbands of 128 MHz based on CS-PFB and the simulation data, and the pulse profile of each subband by coherent dispersion, integration, and folding. Finally, the phase of each subband pulse profile is aligned by non-coherent dedispersion, and to generate a broadband pulse profile, which is basically the same as the pulse profile obtained from the original data using DSPSR. The experimental results show that the scheme of QTT UWL reception system is feasible, and the proposed channel algorithm in this paper is effective.\",\"PeriodicalId\":54494,\"journal\":{\"name\":\"Research in Astronomy and Astrophysics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Astronomy and Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4527/ad0427\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad0427","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Research on UWL signal channelization for Xinjiang 110 m radio telescope
Abstract Aiming at the subband division of UWL (Ultra-Wide wideband Low-frequency) signal (frequency coverage range :704-4032 MHz) of Xinjiang 110 m radio telescope (QTT), a scheme of ultra-wide bandwidth signal is designed. Firstly, we analyze the effect of different window functions such as Hanning window, Hamming window and Kaiser window on the performance of FIR (Finite Impulse Response) digital filters, and implement a CS-PFB (Critical Sampling Polyphase Filter Bank) based on the Hamming window FIR digital filter. Secondly, we generate 3328 MHz simulation data of ultra-wideband pulsar baseband in the frequency range of 704-4032 MHz using the UBPB (Ultra-wide Bandwitdh Pulsar Baseband data generation) algorithm based on the 400 MHz bandwidth pulsar baseband data obtained from Parkes CASPSR observations. Thirdly, we obtain 26 subbands of 128 MHz based on CS-PFB and the simulation data, and the pulse profile of each subband by coherent dispersion, integration, and folding. Finally, the phase of each subband pulse profile is aligned by non-coherent dedispersion, and to generate a broadband pulse profile, which is basically the same as the pulse profile obtained from the original data using DSPSR. The experimental results show that the scheme of QTT UWL reception system is feasible, and the proposed channel algorithm in this paper is effective.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods