Ana Budiša, Xiaozhe Hu, Miroslav Kuchta, Kent–André Mardal, Ludmil T. Zikatanov
{"title":"HAZniCS -多物理场问题的软件组件","authors":"Ana Budiša, Xiaozhe Hu, Miroslav Kuchta, Kent–André Mardal, Ludmil T. Zikatanov","doi":"10.1145/3625561","DOIUrl":null,"url":null,"abstract":"We introduce the software toolbox HAZniCS for solving interface-coupled multiphysics problems. HAZniCS is a suite of modules that combines the well-known FEniCS framework for finite element discretization with solver and graph library HAZmath. The focus of the paper is on the design and implementation of robust and efficient solver algorithms which tackle issues related to the complex interfacial coupling of the physical problems often encountered in applications in brain biomechanics. The robustness and efficiency of the numerical algorithms and methods is shown in several numerical examples, namely the Darcy-Stokes equations that model flow of cerebrospinal fluid in the human brain and the mixed-dimensional model of electrodiffusion in the brain tissue.","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"210 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"HAZniCS – Software Components for Multiphysics Problems\",\"authors\":\"Ana Budiša, Xiaozhe Hu, Miroslav Kuchta, Kent–André Mardal, Ludmil T. Zikatanov\",\"doi\":\"10.1145/3625561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the software toolbox HAZniCS for solving interface-coupled multiphysics problems. HAZniCS is a suite of modules that combines the well-known FEniCS framework for finite element discretization with solver and graph library HAZmath. The focus of the paper is on the design and implementation of robust and efficient solver algorithms which tackle issues related to the complex interfacial coupling of the physical problems often encountered in applications in brain biomechanics. The robustness and efficiency of the numerical algorithms and methods is shown in several numerical examples, namely the Darcy-Stokes equations that model flow of cerebrospinal fluid in the human brain and the mixed-dimensional model of electrodiffusion in the brain tissue.\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3625561\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3625561","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
HAZniCS – Software Components for Multiphysics Problems
We introduce the software toolbox HAZniCS for solving interface-coupled multiphysics problems. HAZniCS is a suite of modules that combines the well-known FEniCS framework for finite element discretization with solver and graph library HAZmath. The focus of the paper is on the design and implementation of robust and efficient solver algorithms which tackle issues related to the complex interfacial coupling of the physical problems often encountered in applications in brain biomechanics. The robustness and efficiency of the numerical algorithms and methods is shown in several numerical examples, namely the Darcy-Stokes equations that model flow of cerebrospinal fluid in the human brain and the mixed-dimensional model of electrodiffusion in the brain tissue.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.