考虑人群脆弱性的COVID-19传播动力学模型

Q3 Mathematics
Patricia Adjeley Laryea, F. T. Oduro, Christopher Saaha Bornaa, Samuel Okyere
{"title":"考虑人群脆弱性的COVID-19传播动力学模型","authors":"Patricia Adjeley Laryea, F. T. Oduro, Christopher Saaha Bornaa, Samuel Okyere","doi":"10.5539/jmr.v15n5p47","DOIUrl":null,"url":null,"abstract":"A well documented characteristic of COVID-19 is that whereas certain infected individuals recover without ever showing symptoms, others regarded as vulnerable, usually age with comorbidities tend to succumb to more or less severe symptoms. To address pertinent issues, we formulate an $SEI_{A}I_{S}RS$ Transmission Dynamics model of COVID-19 where $I_{A}$ and $I_{S}$ respectively represent asymptomatic and symptomatic classes thus allowing the inclusion of parameters which are vulnerability sensitive. We define a vulnerability factor, $\\phi$ and show that the model is globally asymptotically stable at the disease-free equilibrium when $\\mathcal{R}_{0}<1$ and $\\phi$ is appropriately bounded above. We also show that the model is globally asymptotically stable at the endemic equilibrium when $\\mathcal{R}_{0}>1$ and $\\phi$ is appropriately bounded below. Finally, we employ numerical analysis using Ghana data, to further illustrate the effect of vulnerability related parameter  values on the trajectories of key variables of the model. We thereby demonstrated that  if a dominantly young population is of sufficiently low vulnerability then $\\mathcal{R}_{0}<1$, and the Transmission Dynamics exhibits global asymptotic stability at the disease-free equilibrium.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Transmission Dynamics Model of COVID-19 With Consideration of the Vulnerability of a Population\",\"authors\":\"Patricia Adjeley Laryea, F. T. Oduro, Christopher Saaha Bornaa, Samuel Okyere\",\"doi\":\"10.5539/jmr.v15n5p47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well documented characteristic of COVID-19 is that whereas certain infected individuals recover without ever showing symptoms, others regarded as vulnerable, usually age with comorbidities tend to succumb to more or less severe symptoms. To address pertinent issues, we formulate an $SEI_{A}I_{S}RS$ Transmission Dynamics model of COVID-19 where $I_{A}$ and $I_{S}$ respectively represent asymptomatic and symptomatic classes thus allowing the inclusion of parameters which are vulnerability sensitive. We define a vulnerability factor, $\\\\phi$ and show that the model is globally asymptotically stable at the disease-free equilibrium when $\\\\mathcal{R}_{0}<1$ and $\\\\phi$ is appropriately bounded above. We also show that the model is globally asymptotically stable at the endemic equilibrium when $\\\\mathcal{R}_{0}>1$ and $\\\\phi$ is appropriately bounded below. Finally, we employ numerical analysis using Ghana data, to further illustrate the effect of vulnerability related parameter  values on the trajectories of key variables of the model. We thereby demonstrated that  if a dominantly young population is of sufficiently low vulnerability then $\\\\mathcal{R}_{0}<1$, and the Transmission Dynamics exhibits global asymptotic stability at the disease-free equilibrium.\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n5p47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n5p47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19的一个充分记录的特征是,虽然某些感染者在没有症状的情况下康复,但其他被认为是脆弱的人,通常是有合并症的年龄,往往会出现或多或少严重的症状。为了解决相关问题,我们建立了COVID-19的$SEI_{A}I_{S}RS$传播动力学模型,其中$I_{A}$和$I_{S}$分别代表无症状和有症状类别,从而允许包含漏洞敏感参数。我们定义了一个脆弱因子$\phi$,并证明了当$\mathcal{R}_{0}<1$和$\phi$在上面有适当的界时,模型在无病平衡点处是全局渐近稳定的。我们还证明了当$\mathcal{R}_{0}>1$和$\phi$被适当地有界于下时,模型在局部均衡处是全局渐近稳定的。最后,我们利用加纳的数据进行了数值分析,进一步说明了脆弱性相关参数的影响。模型关键变量轨迹上的值。因此,我们证明了如果年轻群体的脆弱性足够低,则$\mathcal{R}_{0}<1$,并且传播动力学在无病平衡处表现出全局渐近稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Transmission Dynamics Model of COVID-19 With Consideration of the Vulnerability of a Population
A well documented characteristic of COVID-19 is that whereas certain infected individuals recover without ever showing symptoms, others regarded as vulnerable, usually age with comorbidities tend to succumb to more or less severe symptoms. To address pertinent issues, we formulate an $SEI_{A}I_{S}RS$ Transmission Dynamics model of COVID-19 where $I_{A}$ and $I_{S}$ respectively represent asymptomatic and symptomatic classes thus allowing the inclusion of parameters which are vulnerability sensitive. We define a vulnerability factor, $\phi$ and show that the model is globally asymptotically stable at the disease-free equilibrium when $\mathcal{R}_{0}&lt;1$ and $\phi$ is appropriately bounded above. We also show that the model is globally asymptotically stable at the endemic equilibrium when $\mathcal{R}_{0}&gt;1$ and $\phi$ is appropriately bounded below. Finally, we employ numerical analysis using Ghana data, to further illustrate the effect of vulnerability related parameter&nbsp; values on the trajectories of key variables of the model. We thereby demonstrated that&nbsp; if a dominantly young population is of sufficiently low vulnerability then $\mathcal{R}_{0}&lt;1$, and the Transmission Dynamics exhibits global asymptotic stability at the disease-free equilibrium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信