{"title":"原始和衍生的余甘子种皮修复水中As(III)离子的统计分析","authors":"Rajeev Kumar, Jyoti Chawla, Madhvi Nayyar","doi":"10.2166/wpt.2023.165","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this study is to determine the optimal conditions for remediation of As(III) ions from water using adsorbents prepared from the seed coat of pristine Phyllanthus emblica (PPE) and derivatized Phyllanthus emblica (DPE), and were analyzed with the help of Box–Behnken design (BBD) and central composite design (CCD) optimization techniques. pH, initial ion concentration, dosage, and contact time were taken as process parameters while designing the experiment. The desirability factor for both the adsorbents was high as follows: (1.0) for the BBD in comparison to the CCD (0.8). The regression coefficient (R2) for both adsorbents was in the range of 0.993–0.999 for the BBD and 0.965–0.969 for the CCD. The BBD is found to be more suitable for designing experiments, optimization of variables for maximum removal, and estimation of removal percentage in different conditions. The adsorption of ions at equilibrium (qe) was found to be 43.59 mg/g at optimal conditions of pH 7.13, initial concentration of arsenic of 99.02 mg/L, contact time of 105.13 min, and dosage of 0.12 g/L for PPE using the BBD. However, the adsorption of ions at equilibrium (qe) was found to be 48.79 mg/g at optimal conditions of pH 7.31, initial ion concentration of 98.82 mg/L, contact time of 126.99 min, and dosage of 0.12 g/L for DPE using the BBD technique.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical analysis for remediation of As(III) ions from water using pristine and derivatized <i>Phyllanthus emblica</i> seed coat\",\"authors\":\"Rajeev Kumar, Jyoti Chawla, Madhvi Nayyar\",\"doi\":\"10.2166/wpt.2023.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this study is to determine the optimal conditions for remediation of As(III) ions from water using adsorbents prepared from the seed coat of pristine Phyllanthus emblica (PPE) and derivatized Phyllanthus emblica (DPE), and were analyzed with the help of Box–Behnken design (BBD) and central composite design (CCD) optimization techniques. pH, initial ion concentration, dosage, and contact time were taken as process parameters while designing the experiment. The desirability factor for both the adsorbents was high as follows: (1.0) for the BBD in comparison to the CCD (0.8). The regression coefficient (R2) for both adsorbents was in the range of 0.993–0.999 for the BBD and 0.965–0.969 for the CCD. The BBD is found to be more suitable for designing experiments, optimization of variables for maximum removal, and estimation of removal percentage in different conditions. The adsorption of ions at equilibrium (qe) was found to be 43.59 mg/g at optimal conditions of pH 7.13, initial concentration of arsenic of 99.02 mg/L, contact time of 105.13 min, and dosage of 0.12 g/L for PPE using the BBD. However, the adsorption of ions at equilibrium (qe) was found to be 48.79 mg/g at optimal conditions of pH 7.31, initial ion concentration of 98.82 mg/L, contact time of 126.99 min, and dosage of 0.12 g/L for DPE using the BBD technique.\",\"PeriodicalId\":23794,\"journal\":{\"name\":\"Water Practice and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Practice and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wpt.2023.165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2023.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Statistical analysis for remediation of As(III) ions from water using pristine and derivatized Phyllanthus emblica seed coat
Abstract The aim of this study is to determine the optimal conditions for remediation of As(III) ions from water using adsorbents prepared from the seed coat of pristine Phyllanthus emblica (PPE) and derivatized Phyllanthus emblica (DPE), and were analyzed with the help of Box–Behnken design (BBD) and central composite design (CCD) optimization techniques. pH, initial ion concentration, dosage, and contact time were taken as process parameters while designing the experiment. The desirability factor for both the adsorbents was high as follows: (1.0) for the BBD in comparison to the CCD (0.8). The regression coefficient (R2) for both adsorbents was in the range of 0.993–0.999 for the BBD and 0.965–0.969 for the CCD. The BBD is found to be more suitable for designing experiments, optimization of variables for maximum removal, and estimation of removal percentage in different conditions. The adsorption of ions at equilibrium (qe) was found to be 43.59 mg/g at optimal conditions of pH 7.13, initial concentration of arsenic of 99.02 mg/L, contact time of 105.13 min, and dosage of 0.12 g/L for PPE using the BBD. However, the adsorption of ions at equilibrium (qe) was found to be 48.79 mg/g at optimal conditions of pH 7.31, initial ion concentration of 98.82 mg/L, contact time of 126.99 min, and dosage of 0.12 g/L for DPE using the BBD technique.