调查联邦预算收入的异常情况

S. Sternik
{"title":"调查联邦预算收入的异常情况","authors":"S. Sternik","doi":"10.33983/2075-1826-2023-3-40-54","DOIUrl":null,"url":null,"abstract":"Studies of abnormal values play an important role in understanding the generating processes and are one of the key ones in financial analysis and forecasting. This article is devoted to the study of anomalies in federal budget revenues. Based on statistical data for the period from 2008 to 2022, abnormal values of budget revenues in different time periods were revealed using statistical models and machine learning methods, their advantages and disadvantages are shown. Practical recommendations on the use of machine learning methods to identify anomalies in the field of public finance are given.","PeriodicalId":471488,"journal":{"name":"Menedžment i biznes-administrirovanie","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of anomalies in federal budget revenues\",\"authors\":\"S. Sternik\",\"doi\":\"10.33983/2075-1826-2023-3-40-54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies of abnormal values play an important role in understanding the generating processes and are one of the key ones in financial analysis and forecasting. This article is devoted to the study of anomalies in federal budget revenues. Based on statistical data for the period from 2008 to 2022, abnormal values of budget revenues in different time periods were revealed using statistical models and machine learning methods, their advantages and disadvantages are shown. Practical recommendations on the use of machine learning methods to identify anomalies in the field of public finance are given.\",\"PeriodicalId\":471488,\"journal\":{\"name\":\"Menedžment i biznes-administrirovanie\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Menedžment i biznes-administrirovanie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33983/2075-1826-2023-3-40-54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Menedžment i biznes-administrirovanie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33983/2075-1826-2023-3-40-54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异常值的研究对于理解异常值的产生过程具有重要意义,是财务分析和预测的关键研究之一。这篇文章专门研究联邦预算收入中的异常现象。以2008 - 2022年的统计数据为基础,运用统计模型和机器学习方法揭示了不同时期预算收入的异常值,并分析了其优缺点。给出了使用机器学习方法识别公共财政领域异常的实用建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of anomalies in federal budget revenues
Studies of abnormal values play an important role in understanding the generating processes and are one of the key ones in financial analysis and forecasting. This article is devoted to the study of anomalies in federal budget revenues. Based on statistical data for the period from 2008 to 2022, abnormal values of budget revenues in different time periods were revealed using statistical models and machine learning methods, their advantages and disadvantages are shown. Practical recommendations on the use of machine learning methods to identify anomalies in the field of public finance are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信