A. Alper Goksoy, Sahil Hassan, Anish Krishnakumar, Radu Marculescu, Ali Akoglu, Umit Y. Ogras
{"title":"片上异构系统动态自适应调度的理论验证与硬件实现","authors":"A. Alper Goksoy, Sahil Hassan, Anish Krishnakumar, Radu Marculescu, Ali Akoglu, Umit Y. Ogras","doi":"10.3390/jlpea13040056","DOIUrl":null,"url":null,"abstract":"Domain-specific systems on chip (DSSoCs) aim to narrow the gap between general-purpose processors and application-specific designs. CPU clusters enable programmability, whereas hardware accelerators tailored to the target domain minimize task execution times and power consumption. Traditional operating system (OS) schedulers can diminish the potential of DSSoCs, as their execution times can be orders of magnitude larger than the task execution time. To address this problem, we propose a dynamic adaptive scheduling (DAS) framework that combines the advantages of a fast, low-overhead scheduler and a sophisticated, high-performance scheduler with a larger overhead. We present a novel runtime classifier that chooses the better scheduler type as a function of the system workload, leading to improved system performance and energy-delay product (EDP). Experiments with five real-world streaming applications indicate that DAS consistently outperforms fast, low-overhead, and slow, sophisticated schedulers. DAS achieves a 1.29× speedup and a 45% lower EDP than the sophisticated scheduler under low data rates and a 1.28× speedup and a 37% lower EDP than the fast scheduler when the workload complexity increases. Furthermore, we demonstrate that the superior performance of the DAS framework also applies to hardware platforms, with up to a 48% and 52% reduction in the execution time and EDP, respectively.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Validation and Hardware Implementation of Dynamic Adaptive Scheduling for Heterogeneous Systems on Chip\",\"authors\":\"A. Alper Goksoy, Sahil Hassan, Anish Krishnakumar, Radu Marculescu, Ali Akoglu, Umit Y. Ogras\",\"doi\":\"10.3390/jlpea13040056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain-specific systems on chip (DSSoCs) aim to narrow the gap between general-purpose processors and application-specific designs. CPU clusters enable programmability, whereas hardware accelerators tailored to the target domain minimize task execution times and power consumption. Traditional operating system (OS) schedulers can diminish the potential of DSSoCs, as their execution times can be orders of magnitude larger than the task execution time. To address this problem, we propose a dynamic adaptive scheduling (DAS) framework that combines the advantages of a fast, low-overhead scheduler and a sophisticated, high-performance scheduler with a larger overhead. We present a novel runtime classifier that chooses the better scheduler type as a function of the system workload, leading to improved system performance and energy-delay product (EDP). Experiments with five real-world streaming applications indicate that DAS consistently outperforms fast, low-overhead, and slow, sophisticated schedulers. DAS achieves a 1.29× speedup and a 45% lower EDP than the sophisticated scheduler under low data rates and a 1.28× speedup and a 37% lower EDP than the fast scheduler when the workload complexity increases. Furthermore, we demonstrate that the superior performance of the DAS framework also applies to hardware platforms, with up to a 48% and 52% reduction in the execution time and EDP, respectively.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea13040056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea13040056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Theoretical Validation and Hardware Implementation of Dynamic Adaptive Scheduling for Heterogeneous Systems on Chip
Domain-specific systems on chip (DSSoCs) aim to narrow the gap between general-purpose processors and application-specific designs. CPU clusters enable programmability, whereas hardware accelerators tailored to the target domain minimize task execution times and power consumption. Traditional operating system (OS) schedulers can diminish the potential of DSSoCs, as their execution times can be orders of magnitude larger than the task execution time. To address this problem, we propose a dynamic adaptive scheduling (DAS) framework that combines the advantages of a fast, low-overhead scheduler and a sophisticated, high-performance scheduler with a larger overhead. We present a novel runtime classifier that chooses the better scheduler type as a function of the system workload, leading to improved system performance and energy-delay product (EDP). Experiments with five real-world streaming applications indicate that DAS consistently outperforms fast, low-overhead, and slow, sophisticated schedulers. DAS achieves a 1.29× speedup and a 45% lower EDP than the sophisticated scheduler under low data rates and a 1.28× speedup and a 37% lower EDP than the fast scheduler when the workload complexity increases. Furthermore, we demonstrate that the superior performance of the DAS framework also applies to hardware platforms, with up to a 48% and 52% reduction in the execution time and EDP, respectively.