{"title":"旋塞阀启闭过程磨损后密封性能的数值研究","authors":"Junjie Lu, Changsheng Zhu, Daixing Lu","doi":"10.1177/13506501231186284","DOIUrl":null,"url":null,"abstract":"The failure of the plug valve seal may result in dangerous accidents in the production and transportation process of petroleum and chemical products. In the paper at hand, the operating life of the plug valve is studied in the opening–closing process. The adhesion wear between the sealing surface of the plug valve is numerically studied in micro-scale, and the contact force between the sealing surface is balanced with the internal flow field of the plug valve and the deformation force between the set screw and the spool. The internal flow field of the plug valve in opening–closing process is calculated by finite element method. The deformation coupling model between the set screw and the spool is built to analyze the structure and the mechanics of the plug valve. Then, a leakage identification algorithm based on auto-correlation function is implemented for analyzing contact stress of the plug valve's sealing surfaces after wear. Finally, taking plug valve F-2 ISO-STANDARD as an example, the force of turbulent flow field on the spool is calculated during the closing process. Results show, that while the maximum contact stress increases, the pressure decreases, and the displacement trajectory of spool increases. The operating life decreases by increasing the roughness of the spool sealing surface. The model proposed provides a new practical method to evaluate the operating life of the plug valve, which is a good guidance for the design of the valve.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study on sealing performance after wear of plug valve during opening–closing process\",\"authors\":\"Junjie Lu, Changsheng Zhu, Daixing Lu\",\"doi\":\"10.1177/13506501231186284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The failure of the plug valve seal may result in dangerous accidents in the production and transportation process of petroleum and chemical products. In the paper at hand, the operating life of the plug valve is studied in the opening–closing process. The adhesion wear between the sealing surface of the plug valve is numerically studied in micro-scale, and the contact force between the sealing surface is balanced with the internal flow field of the plug valve and the deformation force between the set screw and the spool. The internal flow field of the plug valve in opening–closing process is calculated by finite element method. The deformation coupling model between the set screw and the spool is built to analyze the structure and the mechanics of the plug valve. Then, a leakage identification algorithm based on auto-correlation function is implemented for analyzing contact stress of the plug valve's sealing surfaces after wear. Finally, taking plug valve F-2 ISO-STANDARD as an example, the force of turbulent flow field on the spool is calculated during the closing process. Results show, that while the maximum contact stress increases, the pressure decreases, and the displacement trajectory of spool increases. The operating life decreases by increasing the roughness of the spool sealing surface. The model proposed provides a new practical method to evaluate the operating life of the plug valve, which is a good guidance for the design of the valve.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231186284\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501231186284","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Numerical study on sealing performance after wear of plug valve during opening–closing process
The failure of the plug valve seal may result in dangerous accidents in the production and transportation process of petroleum and chemical products. In the paper at hand, the operating life of the plug valve is studied in the opening–closing process. The adhesion wear between the sealing surface of the plug valve is numerically studied in micro-scale, and the contact force between the sealing surface is balanced with the internal flow field of the plug valve and the deformation force between the set screw and the spool. The internal flow field of the plug valve in opening–closing process is calculated by finite element method. The deformation coupling model between the set screw and the spool is built to analyze the structure and the mechanics of the plug valve. Then, a leakage identification algorithm based on auto-correlation function is implemented for analyzing contact stress of the plug valve's sealing surfaces after wear. Finally, taking plug valve F-2 ISO-STANDARD as an example, the force of turbulent flow field on the spool is calculated during the closing process. Results show, that while the maximum contact stress increases, the pressure decreases, and the displacement trajectory of spool increases. The operating life decreases by increasing the roughness of the spool sealing surface. The model proposed provides a new practical method to evaluate the operating life of the plug valve, which is a good guidance for the design of the valve.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).