{"title":"热力学极限第一李杨零","authors":"Jianping Jiang, Charles M. Newman","doi":"10.1002/cpa.22159","DOIUrl":null,"url":null,"abstract":"<p>We complete the verification of the 1952 Yang and Lee proposal that thermodynamic singularities are exactly the limits in <math>\n <semantics>\n <mi>R</mi>\n <annotation>${\\mathbb {R}}$</annotation>\n </semantics></math> of finite-volume singularities in <math>\n <semantics>\n <mi>C</mi>\n <annotation>${\\mathbb {C}}$</annotation>\n </semantics></math>. For the Ising model defined on a finite <math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$\\Lambda \\subset \\mathbb {Z}^d$</annotation>\n </semantics></math> at inverse temperature <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\beta \\ge 0$</annotation>\n </semantics></math> and external field <i>h</i>, let <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\Lambda ,\\beta )$</annotation>\n </semantics></math> be the modulus of the first zero (that closest to the origin) of its partition function (in the variable <i>h</i>). We prove that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\Lambda ,\\beta )$</annotation>\n </semantics></math> decreases to <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\mathbb {Z}^d,\\beta )$</annotation>\n </semantics></math> as Λ increases to <math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {Z}^d$</annotation>\n </semantics></math> where <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <mrow>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\mathbb {Z}^d,\\beta )\\in [0,\\infty )$</annotation>\n </semantics></math> is the radius of the largest disk centered at the origin in which the free energy in the thermodynamic limit is analytic. We also note that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\mathbb {Z}^d,\\beta )$</annotation>\n </semantics></math> is strictly positive if and only if β is strictly less than the critical inverse temperature.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermodynamic limit of the first Lee-Yang zero\",\"authors\":\"Jianping Jiang, Charles M. Newman\",\"doi\":\"10.1002/cpa.22159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We complete the verification of the 1952 Yang and Lee proposal that thermodynamic singularities are exactly the limits in <math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>${\\\\mathbb {R}}$</annotation>\\n </semantics></math> of finite-volume singularities in <math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>${\\\\mathbb {C}}$</annotation>\\n </semantics></math>. For the Ising model defined on a finite <math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Lambda \\\\subset \\\\mathbb {Z}^d$</annotation>\\n </semantics></math> at inverse temperature <math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\beta \\\\ge 0$</annotation>\\n </semantics></math> and external field <i>h</i>, let <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\Lambda ,\\\\beta )$</annotation>\\n </semantics></math> be the modulus of the first zero (that closest to the origin) of its partition function (in the variable <i>h</i>). We prove that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\Lambda ,\\\\beta )$</annotation>\\n </semantics></math> decreases to <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\mathbb {Z}^d,\\\\beta )$</annotation>\\n </semantics></math> as Λ increases to <math>\\n <semantics>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\mathbb {Z}^d$</annotation>\\n </semantics></math> where <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∈</mo>\\n <mrow>\\n <mo>[</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\mathbb {Z}^d,\\\\beta )\\\\in [0,\\\\infty )$</annotation>\\n </semantics></math> is the radius of the largest disk centered at the origin in which the free energy in the thermodynamic limit is analytic. We also note that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\mathbb {Z}^d,\\\\beta )$</annotation>\\n </semantics></math> is strictly positive if and only if β is strictly less than the critical inverse temperature.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22159\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22159","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
We complete the verification of the 1952 Yang and Lee proposal that thermodynamic singularities are exactly the limits in of finite-volume singularities in . For the Ising model defined on a finite at inverse temperature and external field h, let be the modulus of the first zero (that closest to the origin) of its partition function (in the variable h). We prove that decreases to as Λ increases to where is the radius of the largest disk centered at the origin in which the free energy in the thermodynamic limit is analytic. We also note that is strictly positive if and only if β is strictly less than the critical inverse temperature.