热力学极限第一李杨零

IF 3.1 1区 数学 Q1 MATHEMATICS
Jianping Jiang, Charles M. Newman
{"title":"热力学极限第一李杨零","authors":"Jianping Jiang,&nbsp;Charles M. Newman","doi":"10.1002/cpa.22159","DOIUrl":null,"url":null,"abstract":"<p>We complete the verification of the 1952 Yang and Lee proposal that thermodynamic singularities are exactly the limits in <math>\n <semantics>\n <mi>R</mi>\n <annotation>${\\mathbb {R}}$</annotation>\n </semantics></math> of finite-volume singularities in <math>\n <semantics>\n <mi>C</mi>\n <annotation>${\\mathbb {C}}$</annotation>\n </semantics></math>. For the Ising model defined on a finite <math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$\\Lambda \\subset \\mathbb {Z}^d$</annotation>\n </semantics></math> at inverse temperature <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\beta \\ge 0$</annotation>\n </semantics></math> and external field <i>h</i>, let <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\Lambda ,\\beta )$</annotation>\n </semantics></math> be the modulus of the first zero (that closest to the origin) of its partition function (in the variable <i>h</i>). We prove that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\Lambda ,\\beta )$</annotation>\n </semantics></math> decreases to <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\mathbb {Z}^d,\\beta )$</annotation>\n </semantics></math> as Λ increases to <math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {Z}^d$</annotation>\n </semantics></math> where <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <mrow>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\mathbb {Z}^d,\\beta )\\in [0,\\infty )$</annotation>\n </semantics></math> is the radius of the largest disk centered at the origin in which the free energy in the thermodynamic limit is analytic. We also note that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\mathbb {Z}^d,\\beta )$</annotation>\n </semantics></math> is strictly positive if and only if β is strictly less than the critical inverse temperature.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 2","pages":"1224-1234"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermodynamic limit of the first Lee-Yang zero\",\"authors\":\"Jianping Jiang,&nbsp;Charles M. Newman\",\"doi\":\"10.1002/cpa.22159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We complete the verification of the 1952 Yang and Lee proposal that thermodynamic singularities are exactly the limits in <math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>${\\\\mathbb {R}}$</annotation>\\n </semantics></math> of finite-volume singularities in <math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>${\\\\mathbb {C}}$</annotation>\\n </semantics></math>. For the Ising model defined on a finite <math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Lambda \\\\subset \\\\mathbb {Z}^d$</annotation>\\n </semantics></math> at inverse temperature <math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\beta \\\\ge 0$</annotation>\\n </semantics></math> and external field <i>h</i>, let <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\Lambda ,\\\\beta )$</annotation>\\n </semantics></math> be the modulus of the first zero (that closest to the origin) of its partition function (in the variable <i>h</i>). We prove that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\Lambda ,\\\\beta )$</annotation>\\n </semantics></math> decreases to <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\mathbb {Z}^d,\\\\beta )$</annotation>\\n </semantics></math> as Λ increases to <math>\\n <semantics>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\mathbb {Z}^d$</annotation>\\n </semantics></math> where <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∈</mo>\\n <mrow>\\n <mo>[</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\mathbb {Z}^d,\\\\beta )\\\\in [0,\\\\infty )$</annotation>\\n </semantics></math> is the radius of the largest disk centered at the origin in which the free energy in the thermodynamic limit is analytic. We also note that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\mathbb {Z}^d,\\\\beta )$</annotation>\\n </semantics></math> is strictly positive if and only if β is strictly less than the critical inverse temperature.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 2\",\"pages\":\"1224-1234\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22159\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22159","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们完成了1952年Yang和Lee提出的关于热力学奇点正是C ${\mathbb {C}}$中有限体积奇点在R ${\mathbb {R}}$中的极限的验证。对于在逆温度β≥0 $\beta \ge 0$和外场h处定义在有限的Λ∧Z d $\Lambda \subset \mathbb {Z}^d$上的Ising模型,设α 1 (Λ,β) $\alpha _1(\Lambda ,\beta )$是其配分函数(在变量h中)的第一个零(最接近原点)的模。我们证明α 1 (Λ,β) $\alpha _1(\Lambda ,\beta )$减小到α 1 (zd,β) $\alpha _1(\mathbb {Z}^d,\beta )$随着Λ增大到zd $\mathbb {Z}^d$,其中α 1 (zd, β)∈[0,∞)$\alpha _1(\mathbb {Z}^d,\beta )\in [0,\infty )$为以原点为中心的最大圆盘的半径,在该圆盘中,热力学极限下的自由能是解析的。我们还注意到α 1 (Z d, β) $\alpha _1(\mathbb {Z}^d,\beta )$是严格正的,当且仅当β严格小于临界逆温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic limit of the first Lee-Yang zero

We complete the verification of the 1952 Yang and Lee proposal that thermodynamic singularities are exactly the limits in R ${\mathbb {R}}$ of finite-volume singularities in C ${\mathbb {C}}$ . For the Ising model defined on a finite Λ Z d $\Lambda \subset \mathbb {Z}^d$ at inverse temperature β 0 $\beta \ge 0$ and external field h, let α 1 ( Λ , β ) $\alpha _1(\Lambda ,\beta )$ be the modulus of the first zero (that closest to the origin) of its partition function (in the variable h). We prove that α 1 ( Λ , β ) $\alpha _1(\Lambda ,\beta )$ decreases to α 1 ( Z d , β ) $\alpha _1(\mathbb {Z}^d,\beta )$ as Λ increases to Z d $\mathbb {Z}^d$ where α 1 ( Z d , β ) [ 0 , ) $\alpha _1(\mathbb {Z}^d,\beta )\in [0,\infty )$ is the radius of the largest disk centered at the origin in which the free energy in the thermodynamic limit is analytic. We also note that α 1 ( Z d , β ) $\alpha _1(\mathbb {Z}^d,\beta )$ is strictly positive if and only if β is strictly less than the critical inverse temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信