热力学极限第一李杨零

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jianping Jiang, Charles M. Newman
{"title":"热力学极限第一李杨零","authors":"Jianping Jiang,&nbsp;Charles M. Newman","doi":"10.1002/cpa.22159","DOIUrl":null,"url":null,"abstract":"<p>We complete the verification of the 1952 Yang and Lee proposal that thermodynamic singularities are exactly the limits in <math>\n <semantics>\n <mi>R</mi>\n <annotation>${\\mathbb {R}}$</annotation>\n </semantics></math> of finite-volume singularities in <math>\n <semantics>\n <mi>C</mi>\n <annotation>${\\mathbb {C}}$</annotation>\n </semantics></math>. For the Ising model defined on a finite <math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$\\Lambda \\subset \\mathbb {Z}^d$</annotation>\n </semantics></math> at inverse temperature <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\beta \\ge 0$</annotation>\n </semantics></math> and external field <i>h</i>, let <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\Lambda ,\\beta )$</annotation>\n </semantics></math> be the modulus of the first zero (that closest to the origin) of its partition function (in the variable <i>h</i>). We prove that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\Lambda ,\\beta )$</annotation>\n </semantics></math> decreases to <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\mathbb {Z}^d,\\beta )$</annotation>\n </semantics></math> as Λ increases to <math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {Z}^d$</annotation>\n </semantics></math> where <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <mrow>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\mathbb {Z}^d,\\beta )\\in [0,\\infty )$</annotation>\n </semantics></math> is the radius of the largest disk centered at the origin in which the free energy in the thermodynamic limit is analytic. We also note that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <mi>β</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\alpha _1(\\mathbb {Z}^d,\\beta )$</annotation>\n </semantics></math> is strictly positive if and only if β is strictly less than the critical inverse temperature.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermodynamic limit of the first Lee-Yang zero\",\"authors\":\"Jianping Jiang,&nbsp;Charles M. Newman\",\"doi\":\"10.1002/cpa.22159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We complete the verification of the 1952 Yang and Lee proposal that thermodynamic singularities are exactly the limits in <math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>${\\\\mathbb {R}}$</annotation>\\n </semantics></math> of finite-volume singularities in <math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>${\\\\mathbb {C}}$</annotation>\\n </semantics></math>. For the Ising model defined on a finite <math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Lambda \\\\subset \\\\mathbb {Z}^d$</annotation>\\n </semantics></math> at inverse temperature <math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\beta \\\\ge 0$</annotation>\\n </semantics></math> and external field <i>h</i>, let <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\Lambda ,\\\\beta )$</annotation>\\n </semantics></math> be the modulus of the first zero (that closest to the origin) of its partition function (in the variable <i>h</i>). We prove that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\Lambda ,\\\\beta )$</annotation>\\n </semantics></math> decreases to <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\mathbb {Z}^d,\\\\beta )$</annotation>\\n </semantics></math> as Λ increases to <math>\\n <semantics>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\mathbb {Z}^d$</annotation>\\n </semantics></math> where <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∈</mo>\\n <mrow>\\n <mo>[</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\mathbb {Z}^d,\\\\beta )\\\\in [0,\\\\infty )$</annotation>\\n </semantics></math> is the radius of the largest disk centered at the origin in which the free energy in the thermodynamic limit is analytic. We also note that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\alpha _1(\\\\mathbb {Z}^d,\\\\beta )$</annotation>\\n </semantics></math> is strictly positive if and only if β is strictly less than the critical inverse temperature.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22159\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22159","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

我们完成了1952年Yang和Lee提出的关于热力学奇点正是C ${\mathbb {C}}$中有限体积奇点在R ${\mathbb {R}}$中的极限的验证。对于在逆温度β≥0 $\beta \ge 0$和外场h处定义在有限的Λ∧Z d $\Lambda \subset \mathbb {Z}^d$上的Ising模型,设α 1 (Λ,β) $\alpha _1(\Lambda ,\beta )$是其配分函数(在变量h中)的第一个零(最接近原点)的模。我们证明α 1 (Λ,β) $\alpha _1(\Lambda ,\beta )$减小到α 1 (zd,β) $\alpha _1(\mathbb {Z}^d,\beta )$随着Λ增大到zd $\mathbb {Z}^d$,其中α 1 (zd, β)∈[0,∞)$\alpha _1(\mathbb {Z}^d,\beta )\in [0,\infty )$为以原点为中心的最大圆盘的半径,在该圆盘中,热力学极限下的自由能是解析的。我们还注意到α 1 (Z d, β) $\alpha _1(\mathbb {Z}^d,\beta )$是严格正的,当且仅当β严格小于临界逆温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic limit of the first Lee-Yang zero

We complete the verification of the 1952 Yang and Lee proposal that thermodynamic singularities are exactly the limits in R ${\mathbb {R}}$ of finite-volume singularities in C ${\mathbb {C}}$ . For the Ising model defined on a finite Λ Z d $\Lambda \subset \mathbb {Z}^d$ at inverse temperature β 0 $\beta \ge 0$ and external field h, let α 1 ( Λ , β ) $\alpha _1(\Lambda ,\beta )$ be the modulus of the first zero (that closest to the origin) of its partition function (in the variable h). We prove that α 1 ( Λ , β ) $\alpha _1(\Lambda ,\beta )$ decreases to α 1 ( Z d , β ) $\alpha _1(\mathbb {Z}^d,\beta )$ as Λ increases to Z d $\mathbb {Z}^d$ where α 1 ( Z d , β ) [ 0 , ) $\alpha _1(\mathbb {Z}^d,\beta )\in [0,\infty )$ is the radius of the largest disk centered at the origin in which the free energy in the thermodynamic limit is analytic. We also note that α 1 ( Z d , β ) $\alpha _1(\mathbb {Z}^d,\beta )$ is strictly positive if and only if β is strictly less than the critical inverse temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信