{"title":"次线性期望下行扩展负相关随机变量阵列的完全和完全积分收敛","authors":"M. M. Xi, X. Q. Li, L. Chen, X. J. Wang","doi":"10.1137/s0040585x97t991416","DOIUrl":null,"url":null,"abstract":"We study complete and complete integration convergence for arrays of rowwise extended negatively dependent random variables under sublinear expectations. Our results generalize complete moment convergence results of [T.-C. Hu, K.-L. Wang, and A. Rosalsky, Sankhya A, 77 (2015), pp. 1--29] and [Y. Wu, M. Ordón͂ez Cabrera, and A. Volodin, Glas. Mat. Ser. III, 49(69) (2014), pp. 447--466] from classical probability spaces to spaces with sublinear expectation.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"430 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete and Complete Integral Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables under Sublinear Expectations\",\"authors\":\"M. M. Xi, X. Q. Li, L. Chen, X. J. Wang\",\"doi\":\"10.1137/s0040585x97t991416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study complete and complete integration convergence for arrays of rowwise extended negatively dependent random variables under sublinear expectations. Our results generalize complete moment convergence results of [T.-C. Hu, K.-L. Wang, and A. Rosalsky, Sankhya A, 77 (2015), pp. 1--29] and [Y. Wu, M. Ordón͂ez Cabrera, and A. Volodin, Glas. Mat. Ser. III, 49(69) (2014), pp. 447--466] from classical probability spaces to spaces with sublinear expectation.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"430 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991416\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991416","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
研究了次线性期望下行扩展负相关随机变量阵列的完全收敛性和完全收敛性。我们的结果推广了[t . c .]的完全矩收敛结果。胡,K.-L。Wang, A. Rosalsky, Sankhya A, 77 (2015), pp 1—29。Wu, M. Ordón ez Cabrera,和A. Volodin, glass。垫,爵士。III, 49(69) (2014), pp. 447—466]从经典概率空间到次线性期望空间。
Complete and Complete Integral Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables under Sublinear Expectations
We study complete and complete integration convergence for arrays of rowwise extended negatively dependent random variables under sublinear expectations. Our results generalize complete moment convergence results of [T.-C. Hu, K.-L. Wang, and A. Rosalsky, Sankhya A, 77 (2015), pp. 1--29] and [Y. Wu, M. Ordón͂ez Cabrera, and A. Volodin, Glas. Mat. Ser. III, 49(69) (2014), pp. 447--466] from classical probability spaces to spaces with sublinear expectation.
期刊介绍:
Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.