高斯鞅与独立分数布朗运动的和

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
R. Belfadli, M. Chadad, M. Erraoui
{"title":"高斯鞅与独立分数布朗运动的和","authors":"R. Belfadli, M. Chadad, M. Erraoui","doi":"10.1137/s0040585x97t991441","DOIUrl":null,"url":null,"abstract":"In the same context as in the seminal paper [P. Cheridito, Bernoulli, 7 (2001), pp. 913--934], we are concerned with the semimartingale property of the sum of some Gaussian martingale and an independent fractional Brownian motion with Hurst parameter $H \\in (0,1)$. At the same time, we emphasize that the Markov property is lost even if the martingale owns it.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Sum of Gaussian Martingale and an Independent Fractional Brownian Motion\",\"authors\":\"R. Belfadli, M. Chadad, M. Erraoui\",\"doi\":\"10.1137/s0040585x97t991441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the same context as in the seminal paper [P. Cheridito, Bernoulli, 7 (2001), pp. 913--934], we are concerned with the semimartingale property of the sum of some Gaussian martingale and an independent fractional Brownian motion with Hurst parameter $H \\\\in (0,1)$. At the same time, we emphasize that the Markov property is lost even if the martingale owns it.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991441\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991441","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在与开创性论文相同的上下文中[P。Cheridito, Bernoulli, 7 (2001), pp. 913—934],我们关注具有Hurst参数$H \in(0,1)$的高斯鞅和独立分数布朗运动的和的半鞅性质。同时,我们强调即使鞅拥有马尔可夫属性,马尔可夫属性也会丢失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Sum of Gaussian Martingale and an Independent Fractional Brownian Motion
In the same context as in the seminal paper [P. Cheridito, Bernoulli, 7 (2001), pp. 913--934], we are concerned with the semimartingale property of the sum of some Gaussian martingale and an independent fractional Brownian motion with Hurst parameter $H \in (0,1)$. At the same time, we emphasize that the Markov property is lost even if the martingale owns it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信