周期图上超临界分支随机漫步的顶点粒子总体大小的矩渐近性

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
M. V. Platonova, K. S. Ryadovkin
{"title":"周期图上超临界分支随机漫步的顶点粒子总体大小的矩渐近性","authors":"M. V. Platonova, K. S. Ryadovkin","doi":"10.1137/s0040585x97t991386","DOIUrl":null,"url":null,"abstract":"We consider a continuous-time supercritical symmetric branching random walk on a multidimensional graph with periodic particle generation sources. A logarithmic asymptotic formula is obtained for the moments of population sizes of particles at each vertex of the graph as ${t\\to\\infty}$.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moment Asymptotics of Population Size of Particles at Vertices for a Supercritical Branching Random Walk on a Periodic Graph\",\"authors\":\"M. V. Platonova, K. S. Ryadovkin\",\"doi\":\"10.1137/s0040585x97t991386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a continuous-time supercritical symmetric branching random walk on a multidimensional graph with periodic particle generation sources. A logarithmic asymptotic formula is obtained for the moments of population sizes of particles at each vertex of the graph as ${t\\\\to\\\\infty}$.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991386\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991386","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有周期粒子生成源的多维图上的连续时间超临界对称分支随机漫步问题。得到了图中各顶点处粒子总体大小矩的对数渐近公式${t\to\infty}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment Asymptotics of Population Size of Particles at Vertices for a Supercritical Branching Random Walk on a Periodic Graph
We consider a continuous-time supercritical symmetric branching random walk on a multidimensional graph with periodic particle generation sources. A logarithmic asymptotic formula is obtained for the moments of population sizes of particles at each vertex of the graph as ${t\to\infty}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信