{"title":"最难的英语语言","authors":"Mikhail Mrykhin, Alexander Okhotin","doi":"10.1142/s012905412344001x","DOIUrl":null,"url":null,"abstract":"This paper establishes an analogue of Greibach’s hardest language theorem (“The hardest context-free language”, SIAM J. Comp., 1973, http://dx.doi.org/10.1137/0202025 ) for the classical family of LL([Formula: see text]) languages. The first result is that there is a language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form, to which every language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form can be reduced by a homomorphism, that is, [Formula: see text] if and only if [Formula: see text]. Then it is shown that this statement does not hold for the full class of LL([Formula: see text]) languages. The other hardest language theorem is then established in the following form: there is a language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form, such that, for every language [Formula: see text] defined by an LL([Formula: see text]) grammar, with [Formula: see text], there exists a homomorphism [Formula: see text], for which [Formula: see text] if and only if [Formula: see text] [Formula: see text] [Formula: see text], where [Formula: see text] is a new symbol. The results lead to two robust language families: the closures of the languages defined by LL(1) grammars in the Greibach normal form under inverse homomorphisms and under inverse finite transductions.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Hardest LL(k) Language\",\"authors\":\"Mikhail Mrykhin, Alexander Okhotin\",\"doi\":\"10.1142/s012905412344001x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes an analogue of Greibach’s hardest language theorem (“The hardest context-free language”, SIAM J. Comp., 1973, http://dx.doi.org/10.1137/0202025 ) for the classical family of LL([Formula: see text]) languages. The first result is that there is a language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form, to which every language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form can be reduced by a homomorphism, that is, [Formula: see text] if and only if [Formula: see text]. Then it is shown that this statement does not hold for the full class of LL([Formula: see text]) languages. The other hardest language theorem is then established in the following form: there is a language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form, such that, for every language [Formula: see text] defined by an LL([Formula: see text]) grammar, with [Formula: see text], there exists a homomorphism [Formula: see text], for which [Formula: see text] if and only if [Formula: see text] [Formula: see text] [Formula: see text], where [Formula: see text] is a new symbol. The results lead to two robust language families: the closures of the languages defined by LL(1) grammars in the Greibach normal form under inverse homomorphisms and under inverse finite transductions.\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s012905412344001x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s012905412344001x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
摘要
本文建立了一个类似于Greibach最难语言定理(“最难上下文无关语言”,SIAM J. Comp., 1973, http://dx.doi.org/10.1137/0202025)的经典LL(公式:见文本)语言族。第一个结果是存在一种由Greibach范式的LL(1)语法定义的语言[公式:见文],而每一种由Greibach范式的LL(1)语法定义的语言[公式:见文]都可以被同态约简,即当且仅当[公式:见文]。然后证明,这一说法并不适用于LL([公式:见文本])语言的整个类。然后其他困难的语言定理是成立于以下形式:有一个语言(公式:看到文本)定义为一种LL(1)文法Greibach范式,这样,每一个语言(公式:看到文本)定义为一个会([公式:看到文本])语法,(公式:看到文本),存在一个同态(公式:看到文本),因为(公式:看到文本)当且仅当[公式:看到文本][公式:看到文本][公式:看到文本],在[公式:看到文本]是一个新的象征。这些结果导致了两个鲁棒语系:在逆同态和逆有限转导下,由LL(1)语法在Greibach范式下定义的语言闭包。
This paper establishes an analogue of Greibach’s hardest language theorem (“The hardest context-free language”, SIAM J. Comp., 1973, http://dx.doi.org/10.1137/0202025 ) for the classical family of LL([Formula: see text]) languages. The first result is that there is a language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form, to which every language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form can be reduced by a homomorphism, that is, [Formula: see text] if and only if [Formula: see text]. Then it is shown that this statement does not hold for the full class of LL([Formula: see text]) languages. The other hardest language theorem is then established in the following form: there is a language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form, such that, for every language [Formula: see text] defined by an LL([Formula: see text]) grammar, with [Formula: see text], there exists a homomorphism [Formula: see text], for which [Formula: see text] if and only if [Formula: see text] [Formula: see text] [Formula: see text], where [Formula: see text] is a new symbol. The results lead to two robust language families: the closures of the languages defined by LL(1) grammars in the Greibach normal form under inverse homomorphisms and under inverse finite transductions.
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing