{"title":"智能互联环境下电动汽车能耗预测","authors":"Qingchao Liu, Fenxia Gao, Jingya Zhao, Weiqi Zhou","doi":"10.7307/ptt.v35i5.202","DOIUrl":null,"url":null,"abstract":"Accurate energy consumption prediction is essential for improving the driving experience. In the urban road scenario, we discussed the influencing factors of energy consumption and divided the modes from various perspectives. The differences in energy consumption characteristics and distribution laws for electric vehicles using the IDM and CACC car-following models under different traffic flows are compared. An energy consumption prediction framework based on the LightGBM model is proposed. According to the study, driving range, acceleration, accelerating time, decelerating time and cruising time all significantly impact the overall energy consumption of electric vehicles. There are apparent differences in energy consumption characteristics and distribution laws under different traffic flows: average energy consumption is lower under low flow and increased under high flow. The CACC-electric vehicles consume more energy in low flow than IDM-electric vehicles. Under high flow, the opposite is true. The results show that the proposed framework has a high accuracy: the MAPE based on IDM datasets is 3.45% and the RMSE is 0.039 kWh; the MAPE based on CACC datasets is 5.57% and the RMSE is 0.042 kWh. The MAPE and RMSE are reduced by 33.7% and 50.6% (maximum extent) compared to the best comparison algorithm.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment\",\"authors\":\"Qingchao Liu, Fenxia Gao, Jingya Zhao, Weiqi Zhou\",\"doi\":\"10.7307/ptt.v35i5.202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate energy consumption prediction is essential for improving the driving experience. In the urban road scenario, we discussed the influencing factors of energy consumption and divided the modes from various perspectives. The differences in energy consumption characteristics and distribution laws for electric vehicles using the IDM and CACC car-following models under different traffic flows are compared. An energy consumption prediction framework based on the LightGBM model is proposed. According to the study, driving range, acceleration, accelerating time, decelerating time and cruising time all significantly impact the overall energy consumption of electric vehicles. There are apparent differences in energy consumption characteristics and distribution laws under different traffic flows: average energy consumption is lower under low flow and increased under high flow. The CACC-electric vehicles consume more energy in low flow than IDM-electric vehicles. Under high flow, the opposite is true. The results show that the proposed framework has a high accuracy: the MAPE based on IDM datasets is 3.45% and the RMSE is 0.039 kWh; the MAPE based on CACC datasets is 5.57% and the RMSE is 0.042 kWh. The MAPE and RMSE are reduced by 33.7% and 50.6% (maximum extent) compared to the best comparison algorithm.\",\"PeriodicalId\":54546,\"journal\":{\"name\":\"Promet-Traffic & Transportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Promet-Traffic & Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7307/ptt.v35i5.202\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7307/ptt.v35i5.202","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment
Accurate energy consumption prediction is essential for improving the driving experience. In the urban road scenario, we discussed the influencing factors of energy consumption and divided the modes from various perspectives. The differences in energy consumption characteristics and distribution laws for electric vehicles using the IDM and CACC car-following models under different traffic flows are compared. An energy consumption prediction framework based on the LightGBM model is proposed. According to the study, driving range, acceleration, accelerating time, decelerating time and cruising time all significantly impact the overall energy consumption of electric vehicles. There are apparent differences in energy consumption characteristics and distribution laws under different traffic flows: average energy consumption is lower under low flow and increased under high flow. The CACC-electric vehicles consume more energy in low flow than IDM-electric vehicles. Under high flow, the opposite is true. The results show that the proposed framework has a high accuracy: the MAPE based on IDM datasets is 3.45% and the RMSE is 0.039 kWh; the MAPE based on CACC datasets is 5.57% and the RMSE is 0.042 kWh. The MAPE and RMSE are reduced by 33.7% and 50.6% (maximum extent) compared to the best comparison algorithm.
期刊介绍:
This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology.
The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee.
The received papers are subject to peer review in accordance with the recommendations for international scientific journals.
The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering.
The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.