智能互联环境下电动汽车能耗预测

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY
Qingchao Liu, Fenxia Gao, Jingya Zhao, Weiqi Zhou
{"title":"智能互联环境下电动汽车能耗预测","authors":"Qingchao Liu, Fenxia Gao, Jingya Zhao, Weiqi Zhou","doi":"10.7307/ptt.v35i5.202","DOIUrl":null,"url":null,"abstract":"Accurate energy consumption prediction is essential for improving the driving experience. In the urban road scenario, we discussed the influencing factors of energy consumption and divided the modes from various perspectives. The differences in energy consumption characteristics and distribution laws for electric vehicles using the IDM and CACC car-following models under different traffic flows are compared. An energy consumption prediction framework based on the LightGBM model is proposed. According to the study, driving range, acceleration, accelerating time, decelerating time and cruising time all significantly impact the overall energy consumption of electric vehicles. There are apparent differences in energy consumption characteristics and distribution laws under different traffic flows: average energy consumption is lower under low flow and increased under high flow. The CACC-electric vehicles consume more energy in low flow than IDM-electric vehicles. Under high flow, the opposite is true. The results show that the proposed framework has a high accuracy: the MAPE based on IDM datasets is 3.45% and the RMSE is 0.039 kWh; the MAPE based on CACC datasets is 5.57% and the RMSE is 0.042 kWh. The MAPE and RMSE are reduced by 33.7% and 50.6% (maximum extent) compared to the best comparison algorithm.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment\",\"authors\":\"Qingchao Liu, Fenxia Gao, Jingya Zhao, Weiqi Zhou\",\"doi\":\"10.7307/ptt.v35i5.202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate energy consumption prediction is essential for improving the driving experience. In the urban road scenario, we discussed the influencing factors of energy consumption and divided the modes from various perspectives. The differences in energy consumption characteristics and distribution laws for electric vehicles using the IDM and CACC car-following models under different traffic flows are compared. An energy consumption prediction framework based on the LightGBM model is proposed. According to the study, driving range, acceleration, accelerating time, decelerating time and cruising time all significantly impact the overall energy consumption of electric vehicles. There are apparent differences in energy consumption characteristics and distribution laws under different traffic flows: average energy consumption is lower under low flow and increased under high flow. The CACC-electric vehicles consume more energy in low flow than IDM-electric vehicles. Under high flow, the opposite is true. The results show that the proposed framework has a high accuracy: the MAPE based on IDM datasets is 3.45% and the RMSE is 0.039 kWh; the MAPE based on CACC datasets is 5.57% and the RMSE is 0.042 kWh. The MAPE and RMSE are reduced by 33.7% and 50.6% (maximum extent) compared to the best comparison algorithm.\",\"PeriodicalId\":54546,\"journal\":{\"name\":\"Promet-Traffic & Transportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Promet-Traffic & Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7307/ptt.v35i5.202\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7307/ptt.v35i5.202","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

准确的能耗预测对于改善驾驶体验至关重要。在城市道路场景中,我们讨论了能源消耗的影响因素,并从不同角度进行了模式划分。比较了不同交通流下IDM和ccc随车模型下电动汽车能耗特性和分布规律的差异。提出了一种基于LightGBM模型的能耗预测框架。研究表明,续驶里程、加速度、加速时间、减速时间和巡航时间都对电动汽车的整体能耗有显著影响。不同交通流量下的能耗特征和分布规律存在明显差异:低流量时平均能耗较低,高流量时平均能耗增加。ccc -电动汽车低流量能耗高于idm -电动汽车。在高流量下,情况正好相反。结果表明,该框架具有较高的精度:基于IDM数据集的MAPE为3.45%,RMSE为0.039 kWh;基于CACC数据集的MAPE为5.57%,RMSE为0.042 kWh。与最佳比较算法相比,MAPE和RMSE分别降低了33.7%和50.6%(最大程度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment
Accurate energy consumption prediction is essential for improving the driving experience. In the urban road scenario, we discussed the influencing factors of energy consumption and divided the modes from various perspectives. The differences in energy consumption characteristics and distribution laws for electric vehicles using the IDM and CACC car-following models under different traffic flows are compared. An energy consumption prediction framework based on the LightGBM model is proposed. According to the study, driving range, acceleration, accelerating time, decelerating time and cruising time all significantly impact the overall energy consumption of electric vehicles. There are apparent differences in energy consumption characteristics and distribution laws under different traffic flows: average energy consumption is lower under low flow and increased under high flow. The CACC-electric vehicles consume more energy in low flow than IDM-electric vehicles. Under high flow, the opposite is true. The results show that the proposed framework has a high accuracy: the MAPE based on IDM datasets is 3.45% and the RMSE is 0.039 kWh; the MAPE based on CACC datasets is 5.57% and the RMSE is 0.042 kWh. The MAPE and RMSE are reduced by 33.7% and 50.6% (maximum extent) compared to the best comparison algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信