瓶颈凸子集:在一个点集中求k个大凸集

Stephane Durocher, J. Mark Keil, Saeed Mehrabi, Debajyoti Mondal
{"title":"瓶颈凸子集:在一个点集中求k个大凸集","authors":"Stephane Durocher, J. Mark Keil, Saeed Mehrabi, Debajyoti Mondal","doi":"10.1142/s0218195922410035","DOIUrl":null,"url":null,"abstract":"Chvátal and Klincsek (1980) gave an [Formula: see text]-time algorithm for the problem of finding a maximum-cardinality convex subset of an arbitrary given set [Formula: see text] of [Formula: see text] points in the plane. This paper examines a generalization of the problem, the Bottleneck Convex Subsets problem: given a set [Formula: see text] of [Formula: see text] points in the plane and a positive integer [Formula: see text], select [Formula: see text] pairwise disjoint convex subsets of [Formula: see text] such that the cardinality of the smallest subset is maximized. Equivalently, a solution maximizes the cardinality of [Formula: see text] mutually disjoint convex subsets of [Formula: see text] of equal cardinality. We give an algorithm that solves the problem exactly, with running time polynomial in [Formula: see text] when [Formula: see text] is fixed. We then show the problem to be NP-hard when [Formula: see text] is an arbitrary input parameter, even for points in general position. Finally, we give a fixed-parameter tractable algorithm parameterized in terms of the number of points strictly interior to the convex hull.","PeriodicalId":285210,"journal":{"name":"International Journal of Computational Geometry and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bottleneck Convex Subsets: Finding k Large Convex Sets in a Point Set\",\"authors\":\"Stephane Durocher, J. Mark Keil, Saeed Mehrabi, Debajyoti Mondal\",\"doi\":\"10.1142/s0218195922410035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chvátal and Klincsek (1980) gave an [Formula: see text]-time algorithm for the problem of finding a maximum-cardinality convex subset of an arbitrary given set [Formula: see text] of [Formula: see text] points in the plane. This paper examines a generalization of the problem, the Bottleneck Convex Subsets problem: given a set [Formula: see text] of [Formula: see text] points in the plane and a positive integer [Formula: see text], select [Formula: see text] pairwise disjoint convex subsets of [Formula: see text] such that the cardinality of the smallest subset is maximized. Equivalently, a solution maximizes the cardinality of [Formula: see text] mutually disjoint convex subsets of [Formula: see text] of equal cardinality. We give an algorithm that solves the problem exactly, with running time polynomial in [Formula: see text] when [Formula: see text] is fixed. We then show the problem to be NP-hard when [Formula: see text] is an arbitrary input parameter, even for points in general position. Finally, we give a fixed-parameter tractable algorithm parameterized in terms of the number of points strictly interior to the convex hull.\",\"PeriodicalId\":285210,\"journal\":{\"name\":\"International Journal of Computational Geometry and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218195922410035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218195922410035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Chvátal和Klincsek(1980)给出了一种[公式:见文]时间算法,用于在平面上的[公式:见文]点的任意给定集合[公式:见文]中找到一个最大基数凸子集的问题。本文研究瓶颈凸子集问题的一个推广:给定平面上[公式:见文]点的[公式:见文]集和一个正整数[公式:见文],选择[公式:见文]的[公式:见文]的[公式:见文]对不相交的[公式:见文]凸子集,使最小子集的基数最大化。同样地,一个解最大化相等基数的[公式:见文]的[公式:见文]互不相交的凸子集的基数。我们给出了一种算法,当[Formula: see text]固定时,算法的运行时间多项式为[Formula: see text]。然后,当[公式:见文本]是任意输入参数时,即使对于一般位置的点,我们也会证明问题是np困难的。最后,给出了一种以凸包内严格点数为参数的定参数易处理算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bottleneck Convex Subsets: Finding k Large Convex Sets in a Point Set
Chvátal and Klincsek (1980) gave an [Formula: see text]-time algorithm for the problem of finding a maximum-cardinality convex subset of an arbitrary given set [Formula: see text] of [Formula: see text] points in the plane. This paper examines a generalization of the problem, the Bottleneck Convex Subsets problem: given a set [Formula: see text] of [Formula: see text] points in the plane and a positive integer [Formula: see text], select [Formula: see text] pairwise disjoint convex subsets of [Formula: see text] such that the cardinality of the smallest subset is maximized. Equivalently, a solution maximizes the cardinality of [Formula: see text] mutually disjoint convex subsets of [Formula: see text] of equal cardinality. We give an algorithm that solves the problem exactly, with running time polynomial in [Formula: see text] when [Formula: see text] is fixed. We then show the problem to be NP-hard when [Formula: see text] is an arbitrary input parameter, even for points in general position. Finally, we give a fixed-parameter tractable algorithm parameterized in terms of the number of points strictly interior to the convex hull.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信