具有对角无序镶嵌调制的一维晶格中激发的输运和局域化性质

Ba Phi Nguyen, Kihong Kim
{"title":"具有对角无序镶嵌调制的一维晶格中激发的输运和局域化性质","authors":"Ba Phi Nguyen, Kihong Kim","doi":"10.1088/1751-8121/ad03cd","DOIUrl":null,"url":null,"abstract":"Abstract We present a numerical study of the transport and localization properties of excitations in one-dimensional lattices with diagonal disordered mosaic modulations. The model is characterized by the modulation period κ and the disorder strength W . We calculate the disorder averages <?CDATA $\\langle T\\rangle$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo> <mml:mi>T</mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo> </mml:math> , <?CDATA $\\langle \\ln T\\rangle$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mo>〈</mml:mo> <mml:mi>ln</mml:mi> <mml:mi>T</mml:mi> <mml:mo>〉</mml:mo> </mml:mrow> </mml:math> , and <?CDATA $\\langle P\\rangle$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo> <mml:mi>P</mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo> </mml:math> , where T is the transmittance and P is the participation ratio, as a function of energy E and system size L , for different values of κ and W . For excitations at quasiresonance energies determined by κ , we find power-law scaling behaviors of the form <?CDATA $\\langle T \\rangle \\propto L^{-\\gamma_{a}}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo> <mml:mi>T</mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo> <mml:mo>∝</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mrow> <mml:mi>a</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:msup> </mml:math> , <?CDATA $\\langle \\ln T \\rangle \\approx -\\gamma_g \\ln L$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo> <mml:mo form=\"prefix\">ln</mml:mo> <mml:mi>T</mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo> <mml:mo>≈</mml:mo> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo form=\"prefix\">ln</mml:mo> <mml:mi>L</mml:mi> </mml:math> , and <?CDATA $\\langle P \\rangle \\propto L^{\\beta}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo> <mml:mi>P</mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo> <mml:mo>∝</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>β</mml:mi> </mml:mrow> </mml:msup> </mml:math> , as L increases to a large value. In the strong disorder limit, the exponents are seen to saturate at the values <?CDATA $\\gamma_a \\sim 0.5$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>a</mml:mi> </mml:msub> <mml:mo>∼</mml:mo> <mml:mn>0.5</mml:mn> </mml:math> , <?CDATA $\\gamma_g \\sim 1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>∼</mml:mo> <mml:mn>1</mml:mn> </mml:math> , and <?CDATA $\\beta\\sim 0.3$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>β</mml:mi> <mml:mo>∼</mml:mo> <mml:mn>0.3</mml:mn> </mml:math> , regardless of the quasiresonance energy value. This behavior is in contrast to the exponential localization behavior occurring at all other energies. The appearance of sharp peaks in the participation ratio spectrum at quasiresonance energies provides additional evidence for the existence of an anomalous power-law localization phenomenon. The corresponding eigenstates demonstrate multifractal behavior and exhibit unique node structures. In addition, we investigate the time-dependent wave packet dynamics and calculate the mean square displacement <?CDATA $\\langle m^2(t) \\rangle$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo> <mml:msup> <mml:mi>m</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo> </mml:math> , spatial probability distribution, participation number, and return probability. When the wave packet’s initial momentum satisfies the quasiresonance condition, we observe a subdiffusive spreading of the wave packet, characterized by <?CDATA $\\langle m^2(t) \\rangle\\propto t^{\\eta}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo> <mml:msup> <mml:mi>m</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo> <mml:mo>∝</mml:mo> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow> <mml:mi>η</mml:mi> </mml:mrow> </mml:msup> </mml:math> where η is always less than 1. We also note the occurrence of partial localization at quasiresonance energies, as indicated by the saturation of the participation number and a nonzero value for the return probability at long times.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"22 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transport and localization properties of excitations in one-dimensional lattices with diagonal disordered mosaic modulations\",\"authors\":\"Ba Phi Nguyen, Kihong Kim\",\"doi\":\"10.1088/1751-8121/ad03cd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a numerical study of the transport and localization properties of excitations in one-dimensional lattices with diagonal disordered mosaic modulations. The model is characterized by the modulation period κ and the disorder strength W . We calculate the disorder averages <?CDATA $\\\\langle T\\\\rangle$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo> <mml:mi>T</mml:mi> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo> </mml:math> , <?CDATA $\\\\langle \\\\ln T\\\\rangle$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mo>〈</mml:mo> <mml:mi>ln</mml:mi> <mml:mi>T</mml:mi> <mml:mo>〉</mml:mo> </mml:mrow> </mml:math> , and <?CDATA $\\\\langle P\\\\rangle$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo> <mml:mi>P</mml:mi> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo> </mml:math> , where T is the transmittance and P is the participation ratio, as a function of energy E and system size L , for different values of κ and W . For excitations at quasiresonance energies determined by κ , we find power-law scaling behaviors of the form <?CDATA $\\\\langle T \\\\rangle \\\\propto L^{-\\\\gamma_{a}}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo> <mml:mi>T</mml:mi> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo> <mml:mo>∝</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mrow> <mml:mi>a</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:msup> </mml:math> , <?CDATA $\\\\langle \\\\ln T \\\\rangle \\\\approx -\\\\gamma_g \\\\ln L$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo> <mml:mo form=\\\"prefix\\\">ln</mml:mo> <mml:mi>T</mml:mi> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo> <mml:mo>≈</mml:mo> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo form=\\\"prefix\\\">ln</mml:mo> <mml:mi>L</mml:mi> </mml:math> , and <?CDATA $\\\\langle P \\\\rangle \\\\propto L^{\\\\beta}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo> <mml:mi>P</mml:mi> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo> <mml:mo>∝</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>β</mml:mi> </mml:mrow> </mml:msup> </mml:math> , as L increases to a large value. In the strong disorder limit, the exponents are seen to saturate at the values <?CDATA $\\\\gamma_a \\\\sim 0.5$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>a</mml:mi> </mml:msub> <mml:mo>∼</mml:mo> <mml:mn>0.5</mml:mn> </mml:math> , <?CDATA $\\\\gamma_g \\\\sim 1$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>∼</mml:mo> <mml:mn>1</mml:mn> </mml:math> , and <?CDATA $\\\\beta\\\\sim 0.3$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>β</mml:mi> <mml:mo>∼</mml:mo> <mml:mn>0.3</mml:mn> </mml:math> , regardless of the quasiresonance energy value. This behavior is in contrast to the exponential localization behavior occurring at all other energies. The appearance of sharp peaks in the participation ratio spectrum at quasiresonance energies provides additional evidence for the existence of an anomalous power-law localization phenomenon. The corresponding eigenstates demonstrate multifractal behavior and exhibit unique node structures. In addition, we investigate the time-dependent wave packet dynamics and calculate the mean square displacement <?CDATA $\\\\langle m^2(t) \\\\rangle$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo> <mml:msup> <mml:mi>m</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo> </mml:math> , spatial probability distribution, participation number, and return probability. When the wave packet’s initial momentum satisfies the quasiresonance condition, we observe a subdiffusive spreading of the wave packet, characterized by <?CDATA $\\\\langle m^2(t) \\\\rangle\\\\propto t^{\\\\eta}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo> <mml:msup> <mml:mi>m</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo> <mml:mo>∝</mml:mo> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow> <mml:mi>η</mml:mi> </mml:mrow> </mml:msup> </mml:math> where η is always less than 1. We also note the occurrence of partial localization at quasiresonance energies, as indicated by the saturation of the participation number and a nonzero value for the return probability at long times.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"22 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad03cd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad03cd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文对具有对角无序镶嵌调制的一维晶格中激发的输运和局域化性质进行了数值研究。该模型的特征是调制周期κ和无序强度W。我们计算⟨T⟩,< ln T >和⟨P⟩的无序平均值,其中T是透射率,P是参与率,作为能量E和系统大小L的函数,用于不同的κ和W值。对于由κ确定的准共振能量的激发,我们发现⟨T⟩∝L−γ a,⟨ln T⟩≈−γ g ln L,和⟨P⟩∝L β的幂律缩放行为,当L增加到一个大值时。在强无序极限下,指数在γ a ~ 0.5、γ g ~ 1和β ~ 0.3处饱和,与准共振能量值无关。这种行为与发生在所有其他能量的指数局域化行为相反。准共振能量下参与比谱的尖峰的出现为反常幂律局域化现象的存在提供了额外的证据。相应的特征态表现出多重分形行为和独特的节点结构。此外,我们研究了时间相关的波包动力学,并计算均方位移⟨m2 (t)⟩,空间概率分布,参与数和返回概率。当波包的初始动量满足准共振条件时,我们观察到波包的次扩散扩散,其特征为⟨m 2 (t)⟩∝t η,其中η总是小于1。我们还注意到在准共振能量处出现部分局域化,这可以通过参与数的饱和和长时间返回概率的非零值来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transport and localization properties of excitations in one-dimensional lattices with diagonal disordered mosaic modulations
Abstract We present a numerical study of the transport and localization properties of excitations in one-dimensional lattices with diagonal disordered mosaic modulations. The model is characterized by the modulation period κ and the disorder strength W . We calculate the disorder averages T , ln T , and P , where T is the transmittance and P is the participation ratio, as a function of energy E and system size L , for different values of κ and W . For excitations at quasiresonance energies determined by κ , we find power-law scaling behaviors of the form T L γ a , ln T γ g ln L , and P L β , as L increases to a large value. In the strong disorder limit, the exponents are seen to saturate at the values γ a 0.5 , γ g 1 , and β 0.3 , regardless of the quasiresonance energy value. This behavior is in contrast to the exponential localization behavior occurring at all other energies. The appearance of sharp peaks in the participation ratio spectrum at quasiresonance energies provides additional evidence for the existence of an anomalous power-law localization phenomenon. The corresponding eigenstates demonstrate multifractal behavior and exhibit unique node structures. In addition, we investigate the time-dependent wave packet dynamics and calculate the mean square displacement m 2 ( t ) , spatial probability distribution, participation number, and return probability. When the wave packet’s initial momentum satisfies the quasiresonance condition, we observe a subdiffusive spreading of the wave packet, characterized by m 2 ( t ) t η where η is always less than 1. We also note the occurrence of partial localization at quasiresonance energies, as indicated by the saturation of the participation number and a nonzero value for the return probability at long times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信