具有Fisher-Hartwig奇点的高斯权值的Hankel行列式和广义painlevev方程

Xinyu Mu, Shulin Lyu
{"title":"具有Fisher-Hartwig奇点的高斯权值的Hankel行列式和广义painlevev方程","authors":"Xinyu Mu, Shulin Lyu","doi":"10.1088/1751-8121/ad04a6","DOIUrl":null,"url":null,"abstract":"Abstract We study the Hankel determinant generated by a Gaussian weight with Fisher–Hartwig singularities of root type at t j , <?CDATA $j = 1,\\cdots ,N$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> </mml:math> . It characterizes a type of average characteristic polynomial of matrices from Gaussian unitary ensembles. We derive the ladder operators satisfied by the associated monic orthogonal polynomials and three compatibility conditions. By using them and introducing 2 N auxiliary quantities <?CDATA $\\{R_{n,j}, r_{n,j}, j = 1,\\cdots,N\\}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:math> , we build a series of difference equations. Furthermore, we prove that <?CDATA $\\{R_{n,j}, r_{n,j}\\}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:math> satisfy Riccati equations. From them we deduce a system of second order PDEs satisfied by <?CDATA $\\{R_{n,j}, j = 1,\\cdots,N\\}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:math> , which reduces to a Painlevé IV equation for N = 1. We also show that the logarithmic derivative of the Hankel determinant satisfies the generalized σ -form of a Painlevé IV equation.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"69 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hankel determinants for a Gaussian weight with Fisher-Hartwig singularities and generalized Painlevé IV equation\",\"authors\":\"Xinyu Mu, Shulin Lyu\",\"doi\":\"10.1088/1751-8121/ad04a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the Hankel determinant generated by a Gaussian weight with Fisher–Hartwig singularities of root type at t j , <?CDATA $j = 1,\\\\cdots ,N$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> </mml:math> . It characterizes a type of average characteristic polynomial of matrices from Gaussian unitary ensembles. We derive the ladder operators satisfied by the associated monic orthogonal polynomials and three compatibility conditions. By using them and introducing 2 N auxiliary quantities <?CDATA $\\\\{R_{n,j}, r_{n,j}, j = 1,\\\\cdots,N\\\\}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:math> , we build a series of difference equations. Furthermore, we prove that <?CDATA $\\\\{R_{n,j}, r_{n,j}\\\\}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:math> satisfy Riccati equations. From them we deduce a system of second order PDEs satisfied by <?CDATA $\\\\{R_{n,j}, j = 1,\\\\cdots,N\\\\}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:math> , which reduces to a Painlevé IV equation for N = 1. We also show that the logarithmic derivative of the Hankel determinant satisfies the generalized σ -form of a Painlevé IV equation.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"69 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad04a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad04a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在t j, j = 1,⋯N处由具有根型Fisher-Hartwig奇点的高斯权值生成的Hankel行列式。刻画了高斯酉系综中矩阵的一类平均特征多项式。导出了相应的单正交多项式和三个相容条件所满足的阶梯算子。利用它们并引入2n辅助量{R N, j, R N, j, j = 1,⋯,N},我们建立了一系列差分方程。进一步证明了{R n, j, R n, j}满足Riccati方程。从它们我们推导出一个二阶偏微分方程系统,满足于{R n, j, j = 1,⋯,n},它简化为n = 1时的painlevev方程。我们还证明了汉克尔行列式的对数导数满足painlevev方程的广义σ -形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hankel determinants for a Gaussian weight with Fisher-Hartwig singularities and generalized Painlevé IV equation
Abstract We study the Hankel determinant generated by a Gaussian weight with Fisher–Hartwig singularities of root type at t j , j = 1 , , N . It characterizes a type of average characteristic polynomial of matrices from Gaussian unitary ensembles. We derive the ladder operators satisfied by the associated monic orthogonal polynomials and three compatibility conditions. By using them and introducing 2 N auxiliary quantities { R n , j , r n , j , j = 1 , , N } , we build a series of difference equations. Furthermore, we prove that { R n , j , r n , j } satisfy Riccati equations. From them we deduce a system of second order PDEs satisfied by { R n , j , j = 1 , , N } , which reduces to a Painlevé IV equation for N = 1. We also show that the logarithmic derivative of the Hankel determinant satisfies the generalized σ -form of a Painlevé IV equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信