所有自由度的四波混频

Filippus Stefanus Roux
{"title":"所有自由度的四波混频","authors":"Filippus Stefanus Roux","doi":"10.1088/1751-8121/acfcf5","DOIUrl":null,"url":null,"abstract":"Abstract A Wigner functional approach is used to derive an evolution equation for a photonic state propagating through a Kerr medium. The resulting evolution equation incorporates all the spatiotemporal degrees of freedom together with the photon-number degrees of freedom and thus allows thorough analyses of the effects of experimental parameters in physical quantum information systems. We then use the evolution equation to consider four-wave mixing as a spontaneous process and finally we impose some approximations to obtain an expression for the optical field due to self-phase modulation.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"58 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four-wave mixing in all degrees of freedom\",\"authors\":\"Filippus Stefanus Roux\",\"doi\":\"10.1088/1751-8121/acfcf5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A Wigner functional approach is used to derive an evolution equation for a photonic state propagating through a Kerr medium. The resulting evolution equation incorporates all the spatiotemporal degrees of freedom together with the photon-number degrees of freedom and thus allows thorough analyses of the effects of experimental parameters in physical quantum information systems. We then use the evolution equation to consider four-wave mixing as a spontaneous process and finally we impose some approximations to obtain an expression for the optical field due to self-phase modulation.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"58 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acfcf5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfcf5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用Wigner泛函方法推导了光子态在克尔介质中传播的演化方程。所得到的演化方程将所有时空自由度与光子数自由度结合在一起,从而可以对物理量子信息系统中实验参数的影响进行彻底的分析。然后我们用演化方程把四波混频看作是一个自发过程,最后我们施加一些近似来得到由于自相位调制引起的光场表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four-wave mixing in all degrees of freedom
Abstract A Wigner functional approach is used to derive an evolution equation for a photonic state propagating through a Kerr medium. The resulting evolution equation incorporates all the spatiotemporal degrees of freedom together with the photon-number degrees of freedom and thus allows thorough analyses of the effects of experimental parameters in physical quantum information systems. We then use the evolution equation to consider four-wave mixing as a spontaneous process and finally we impose some approximations to obtain an expression for the optical field due to self-phase modulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信