{"title":"所有自由度的四波混频","authors":"Filippus Stefanus Roux","doi":"10.1088/1751-8121/acfcf5","DOIUrl":null,"url":null,"abstract":"Abstract A Wigner functional approach is used to derive an evolution equation for a photonic state propagating through a Kerr medium. The resulting evolution equation incorporates all the spatiotemporal degrees of freedom together with the photon-number degrees of freedom and thus allows thorough analyses of the effects of experimental parameters in physical quantum information systems. We then use the evolution equation to consider four-wave mixing as a spontaneous process and finally we impose some approximations to obtain an expression for the optical field due to self-phase modulation.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"58 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four-wave mixing in all degrees of freedom\",\"authors\":\"Filippus Stefanus Roux\",\"doi\":\"10.1088/1751-8121/acfcf5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A Wigner functional approach is used to derive an evolution equation for a photonic state propagating through a Kerr medium. The resulting evolution equation incorporates all the spatiotemporal degrees of freedom together with the photon-number degrees of freedom and thus allows thorough analyses of the effects of experimental parameters in physical quantum information systems. We then use the evolution equation to consider four-wave mixing as a spontaneous process and finally we impose some approximations to obtain an expression for the optical field due to self-phase modulation.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"58 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acfcf5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfcf5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract A Wigner functional approach is used to derive an evolution equation for a photonic state propagating through a Kerr medium. The resulting evolution equation incorporates all the spatiotemporal degrees of freedom together with the photon-number degrees of freedom and thus allows thorough analyses of the effects of experimental parameters in physical quantum information systems. We then use the evolution equation to consider four-wave mixing as a spontaneous process and finally we impose some approximations to obtain an expression for the optical field due to self-phase modulation.