双曲空间上Schrödinger方程的局部平滑估计

IF 2 4区 数学 Q1 MATHEMATICS
Andrew Lawrie, Jonas Luhrmann, Sung-Jin Oh, Sohrab Shahshahani
{"title":"双曲空间上Schrödinger方程的局部平滑估计","authors":"Andrew Lawrie, Jonas Luhrmann, Sung-Jin Oh, Sohrab Shahshahani","doi":"10.1090/memo/1447","DOIUrl":null,"url":null,"abstract":"We establish global-in-time frequency localized local smoothing estimates for Schrödinger equations on hyperbolic space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper H Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">H</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {H}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d \\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the presence of symmetric first and zeroth order potentials, which are possibly time-dependent, possibly large, and have sufficiently fast polynomial decay, these estimates are proved up to a localized lower order error. Then in the time-independent case, we show that a spectral condition (namely, absence of threshold resonances) implies the full local smoothing estimates (without any error), after projecting to the continuous spectrum. In the process, as a means to localize in frequency, we develop a general Littlewood–Paley machinery on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper H Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">H</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {H}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> based on the heat flow. Our results and techniques are motivated by applications to the problem of stability of solitary waves to nonlinear Schrödinger-type equations on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper H Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">H</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {H}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Specifically, some of the estimates established in this paper play a crucial role in the authors’ proof of the nonlinear asymptotic stability of harmonic maps under the Schrödinger maps evolution on the hyperbolic plane; see Lawrie, Lührmann, Oh, and Shahshahani, 2023. As a testament of the robustness of approach, which is based on the positive commutator method and a heat flow based Littlewood-Paley theory, we also show that the main results are stable under small time-dependent perturbations, including polynomially decaying second order ones, and small lower order nonsymmetric perturbations.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"217 ","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Local Smoothing Estimates for Schrödinger Equations on Hyperbolic Space\",\"authors\":\"Andrew Lawrie, Jonas Luhrmann, Sung-Jin Oh, Sohrab Shahshahani\",\"doi\":\"10.1090/memo/1447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish global-in-time frequency localized local smoothing estimates for Schrödinger equations on hyperbolic space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper H Superscript d\\\"> <mml:semantics> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">H</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {H}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d greater-than-or-equal-to 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">d \\\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the presence of symmetric first and zeroth order potentials, which are possibly time-dependent, possibly large, and have sufficiently fast polynomial decay, these estimates are proved up to a localized lower order error. Then in the time-independent case, we show that a spectral condition (namely, absence of threshold resonances) implies the full local smoothing estimates (without any error), after projecting to the continuous spectrum. In the process, as a means to localize in frequency, we develop a general Littlewood–Paley machinery on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper H Superscript d\\\"> <mml:semantics> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">H</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {H}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> based on the heat flow. Our results and techniques are motivated by applications to the problem of stability of solitary waves to nonlinear Schrödinger-type equations on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper H Superscript d\\\"> <mml:semantics> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">H</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {H}^{d}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Specifically, some of the estimates established in this paper play a crucial role in the authors’ proof of the nonlinear asymptotic stability of harmonic maps under the Schrödinger maps evolution on the hyperbolic plane; see Lawrie, Lührmann, Oh, and Shahshahani, 2023. As a testament of the robustness of approach, which is based on the positive commutator method and a heat flow based Littlewood-Paley theory, we also show that the main results are stable under small time-dependent perturbations, including polynomially decaying second order ones, and small lower order nonsymmetric perturbations.\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\"217 \",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1447\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1447","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

建立了双曲空间hh上Schrödinger方程的全局时频局部平滑估计\mathbb H{^d, d≥2 d }\geq 2。在对称的一阶和零阶势的存在下,这些势可能是时间相关的,可能很大,并且有足够快的多项式衰减,这些估计被证明到局部低阶误差。然后,在时间无关的情况下,我们证明了谱条件(即没有阈值共振)意味着在投影到连续谱后的完整局部平滑估计(没有任何误差)。在此过程中,作为频率局域化的手段,我们基于热流原理在h.d \mathbb h.d上开发了通用Littlewood-Paley机械。我们的结果和技术的动机是应用在孤立波的稳定性问题上的非线性Schrödinger-type方程{}\mathbb H{^}d{。具体地说,本文所建立的一些估计对于证明双曲平面上Schrödinger映射演化下调和映射的非线性渐近稳定性起着至关重要的作用;见Lawrie l hrmann和Shahshahani, 2023。为了证明基于正换向子方法和基于热流的Littlewood-Paley理论的方法的鲁棒性,我们还证明了主要结果在小的时间相关扰动下是稳定的,包括多项式衰减的二阶扰动和小的低阶非对称扰动。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Smoothing Estimates for Schrödinger Equations on Hyperbolic Space
We establish global-in-time frequency localized local smoothing estimates for Schrödinger equations on hyperbolic space H d \mathbb {H}^d , d 2 d \geq 2 . In the presence of symmetric first and zeroth order potentials, which are possibly time-dependent, possibly large, and have sufficiently fast polynomial decay, these estimates are proved up to a localized lower order error. Then in the time-independent case, we show that a spectral condition (namely, absence of threshold resonances) implies the full local smoothing estimates (without any error), after projecting to the continuous spectrum. In the process, as a means to localize in frequency, we develop a general Littlewood–Paley machinery on H d \mathbb {H}^d based on the heat flow. Our results and techniques are motivated by applications to the problem of stability of solitary waves to nonlinear Schrödinger-type equations on H d \mathbb {H}^{d} . Specifically, some of the estimates established in this paper play a crucial role in the authors’ proof of the nonlinear asymptotic stability of harmonic maps under the Schrödinger maps evolution on the hyperbolic plane; see Lawrie, Lührmann, Oh, and Shahshahani, 2023. As a testament of the robustness of approach, which is based on the positive commutator method and a heat flow based Littlewood-Paley theory, we also show that the main results are stable under small time-dependent perturbations, including polynomially decaying second order ones, and small lower order nonsymmetric perturbations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信