{"title":"独立随机变量加权和的大数定律:质量的博弈","authors":"Luca Avena, Conrado da Costa","doi":"10.1007/s10959-023-01296-z","DOIUrl":null,"url":null,"abstract":"Abstract We consider weighted sums of independent random variables regulated by an increment sequence and provide operative conditions that ensure a strong law of large numbers for such sums in both the centred and non-centred case. The existing criteria for the strong law are either implicit or based on restrictions on the increment sequence. In our setup we allow for an arbitrary sequence of increments, possibly random, provided the random variables regulated by such increments satisfy some mild concentration conditions. In the non-centred case, convergence can be translated into the behaviour of a deterministic sequence and it becomes a game of mass when the expectation of the random variables is a function of the increment sizes. We identify various classes of increments and illustrate them with a variety of concrete examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Laws of Large Numbers for Weighted Sums of Independent Random Variables: A Game of Mass\",\"authors\":\"Luca Avena, Conrado da Costa\",\"doi\":\"10.1007/s10959-023-01296-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider weighted sums of independent random variables regulated by an increment sequence and provide operative conditions that ensure a strong law of large numbers for such sums in both the centred and non-centred case. The existing criteria for the strong law are either implicit or based on restrictions on the increment sequence. In our setup we allow for an arbitrary sequence of increments, possibly random, provided the random variables regulated by such increments satisfy some mild concentration conditions. In the non-centred case, convergence can be translated into the behaviour of a deterministic sequence and it becomes a game of mass when the expectation of the random variables is a function of the increment sizes. We identify various classes of increments and illustrate them with a variety of concrete examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-023-01296-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10959-023-01296-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laws of Large Numbers for Weighted Sums of Independent Random Variables: A Game of Mass
Abstract We consider weighted sums of independent random variables regulated by an increment sequence and provide operative conditions that ensure a strong law of large numbers for such sums in both the centred and non-centred case. The existing criteria for the strong law are either implicit or based on restrictions on the increment sequence. In our setup we allow for an arbitrary sequence of increments, possibly random, provided the random variables regulated by such increments satisfy some mild concentration conditions. In the non-centred case, convergence can be translated into the behaviour of a deterministic sequence and it becomes a game of mass when the expectation of the random variables is a function of the increment sizes. We identify various classes of increments and illustrate them with a variety of concrete examples.