四维扭转空间中有理曲线集合上的几乎接触结构

IF 0.4 4区 数学 Q4 MATHEMATICS
Michifumi Teruya
{"title":"四维扭转空间中有理曲线集合上的几乎接触结构","authors":"Michifumi Teruya","doi":"10.2996/kmj46306","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a correspondence between certain 5-dimensional complex spacetimes and 4-dimensional twistor spaces. The spacetimes are almost contact manifolds whose curvature tensor satisfies certain conditions. By using the correspondence, we show that a 5-dimensional K-contact manifold can be obtained from the Ren-Wang twistor space [10], which is obtained from two copies of $\\mathbb{C}^4$ identifying open subsets by a holomorphic map. From this result, the Ren-Wang twistor space can be interpreted in the framework of Itoh [5].","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost contact structures on the set of rational curves in a 4-dimensional twistor space\",\"authors\":\"Michifumi Teruya\",\"doi\":\"10.2996/kmj46306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide a correspondence between certain 5-dimensional complex spacetimes and 4-dimensional twistor spaces. The spacetimes are almost contact manifolds whose curvature tensor satisfies certain conditions. By using the correspondence, we show that a 5-dimensional K-contact manifold can be obtained from the Ren-Wang twistor space [10], which is obtained from two copies of $\\\\mathbb{C}^4$ identifying open subsets by a holomorphic map. From this result, the Ren-Wang twistor space can be interpreted in the framework of Itoh [5].\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj46306\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/kmj46306","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了某些5维复时空与4维扭转空间的对应关系。时空几乎是曲率张量满足一定条件的接触流形。利用对应关系,我们证明了一个5维k -接触流形可以从Ren-Wang扭转空间中得到[10],该空间是由两个由全纯映射标识开子集的$\mathbb{C}^4$的拷贝得到的。从这一结果可以在Itoh[5]的框架下解释仁-王扭转空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost contact structures on the set of rational curves in a 4-dimensional twistor space
In this paper, we provide a correspondence between certain 5-dimensional complex spacetimes and 4-dimensional twistor spaces. The spacetimes are almost contact manifolds whose curvature tensor satisfies certain conditions. By using the correspondence, we show that a 5-dimensional K-contact manifold can be obtained from the Ren-Wang twistor space [10], which is obtained from two copies of $\mathbb{C}^4$ identifying open subsets by a holomorphic map. From this result, the Ren-Wang twistor space can be interpreted in the framework of Itoh [5].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信