{"title":"小农集水区营养指数的季节变化及其与蒸散量和土壤储水量的相关性","authors":"Tailin Li, Massimiliano Schiavo, David Zumr","doi":"10.17221/60/2023-swr","DOIUrl":null,"url":null,"abstract":"A precise measurement of evapotranspiration (ET) and soil water storage (SWS) is necessary for crop management and understanding hydrological processes in agricultural catchments. In this study, we extracted the vegetative indices (VIs, including normalised difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI)) from satellite images of the NuÄice catchment. We found a consistent seasonal pattern of VIs across the catchment with higher values and variation ranges during spring and summer and lower values and variation ranges during autumn and winter. Spatial variation of VIs also followed a seasonal trend, decreasing during crop growth and increasing after crop harvesting. Seasonal correlations were observed between monthly average ET and SWS with VIs throughout one crop season, which can be expressed mathematically as exponential functions. We propose that VIs can be used as a surrogate measure for ET and SWS in catchments with poor monitoring capabilities. Further studies are required to investigate the spatial distribution of ET and SWS throughout the watershed and their relationship with VIs. Furthermore, our research emphasises the importance of subsurface recharge in the water balance of the investigated fields. It suggests that subsurface flow may be influenced by potential gradients of the water table, driving its seasonal behaviour in response to bedrock morphology.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal variations of vegetative indices and their correlation with evapotranspiration and soil water storage in a small agricultural catchment\",\"authors\":\"Tailin Li, Massimiliano Schiavo, David Zumr\",\"doi\":\"10.17221/60/2023-swr\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A precise measurement of evapotranspiration (ET) and soil water storage (SWS) is necessary for crop management and understanding hydrological processes in agricultural catchments. In this study, we extracted the vegetative indices (VIs, including normalised difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI)) from satellite images of the NuÄice catchment. We found a consistent seasonal pattern of VIs across the catchment with higher values and variation ranges during spring and summer and lower values and variation ranges during autumn and winter. Spatial variation of VIs also followed a seasonal trend, decreasing during crop growth and increasing after crop harvesting. Seasonal correlations were observed between monthly average ET and SWS with VIs throughout one crop season, which can be expressed mathematically as exponential functions. We propose that VIs can be used as a surrogate measure for ET and SWS in catchments with poor monitoring capabilities. Further studies are required to investigate the spatial distribution of ET and SWS throughout the watershed and their relationship with VIs. Furthermore, our research emphasises the importance of subsurface recharge in the water balance of the investigated fields. It suggests that subsurface flow may be influenced by potential gradients of the water table, driving its seasonal behaviour in response to bedrock morphology.\",\"PeriodicalId\":48982,\"journal\":{\"name\":\"Soil and Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil and Water Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17221/60/2023-swr\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/60/2023-swr","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Seasonal variations of vegetative indices and their correlation with evapotranspiration and soil water storage in a small agricultural catchment
A precise measurement of evapotranspiration (ET) and soil water storage (SWS) is necessary for crop management and understanding hydrological processes in agricultural catchments. In this study, we extracted the vegetative indices (VIs, including normalised difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI)) from satellite images of the NuÄice catchment. We found a consistent seasonal pattern of VIs across the catchment with higher values and variation ranges during spring and summer and lower values and variation ranges during autumn and winter. Spatial variation of VIs also followed a seasonal trend, decreasing during crop growth and increasing after crop harvesting. Seasonal correlations were observed between monthly average ET and SWS with VIs throughout one crop season, which can be expressed mathematically as exponential functions. We propose that VIs can be used as a surrogate measure for ET and SWS in catchments with poor monitoring capabilities. Further studies are required to investigate the spatial distribution of ET and SWS throughout the watershed and their relationship with VIs. Furthermore, our research emphasises the importance of subsurface recharge in the water balance of the investigated fields. It suggests that subsurface flow may be influenced by potential gradients of the water table, driving its seasonal behaviour in response to bedrock morphology.
期刊介绍:
An international peer-reviewed journal published under the auspices of the Czech Academy of Agricultural Sciences and financed by the Ministry of Agriculture of the Czech Republic. Published since 2006.
Thematic: original papers, short communications and critical reviews from all fields of science and engineering related to soil and water and their interactions in natural and man-modified landscapes, with a particular focus on agricultural land use. The fields encompassed include, but are not limited to, the basic and applied soil science, soil hydrology, irrigation and drainage of lands, hydrology, management and revitalisation of small water streams and small water reservoirs, including fishponds, soil erosion research and control, drought and flood control, wetland restoration and protection, surface and ground water protection in therms of their quantity and quality.