一些弱爱因斯坦接触度量3流形

IF 0.4 4区 数学 Q4 MATHEMATICS
Yaning Wang, Pei Wang
{"title":"一些弱爱因斯坦接触度量3流形","authors":"Yaning Wang, Pei Wang","doi":"10.2996/kmj46305","DOIUrl":null,"url":null,"abstract":"We prove that if a non-Sasakian contact metric 3-$\\tau$-$a$-manifold or contact metric 3-$H$-manifold is weakly Einstein, then it is locally isometric to a Lie group equipped with a left invariant contact metric structure.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":"35 10","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some weakly Einstein contact metric 3-manifolds\",\"authors\":\"Yaning Wang, Pei Wang\",\"doi\":\"10.2996/kmj46305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that if a non-Sasakian contact metric 3-$\\\\tau$-$a$-manifold or contact metric 3-$H$-manifold is weakly Einstein, then it is locally isometric to a Lie group equipped with a left invariant contact metric structure.\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":\"35 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj46305\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/kmj46305","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了如果一个非sasakian接触度量3-$\tau$-$a$-流形或接触度量3-$H$-流形是弱爱因斯坦的,那么它是局部等距于一个具有左不变接触度量结构的李群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some weakly Einstein contact metric 3-manifolds
We prove that if a non-Sasakian contact metric 3-$\tau$-$a$-manifold or contact metric 3-$H$-manifold is weakly Einstein, then it is locally isometric to a Lie group equipped with a left invariant contact metric structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信