{"title":"自相似有限群的指数","authors":"Alex Carrazedo Dantas, Emerson de Melo","doi":"10.4171/ggd/754","DOIUrl":null,"url":null,"abstract":"Let $p$ be a prime and $G$ a pro-$p$ group of finite rank that admits a faithful, self-similar action on the $p$-ary rooted tree. We prove that if the set $\\{g\\in G | g^{p^n}=1\\}$ is a nontrivial subgroup for some $n$, then $G$ is a finite $p$-group with exponent at most $p^n$. This applies in particular to power abelian $p$-groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponent of self-similar finite $p$-groups\",\"authors\":\"Alex Carrazedo Dantas, Emerson de Melo\",\"doi\":\"10.4171/ggd/754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be a prime and $G$ a pro-$p$ group of finite rank that admits a faithful, self-similar action on the $p$-ary rooted tree. We prove that if the set $\\\\{g\\\\in G | g^{p^n}=1\\\\}$ is a nontrivial subgroup for some $n$, then $G$ is a finite $p$-group with exponent at most $p^n$. This applies in particular to power abelian $p$-groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/ggd/754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设$p$是一个素数,$G$是一个有限秩的亲$p$群,它在$p$任意根树上有忠实的、自相似的作用。证明了如果集合$\{g\在g | g^{p^n}=1\}$中是某$n$的非平凡子群,则$ g $是一个指数不超过$p^n$的有限$p$-群。这尤其适用于幂阿贝尔$p$-群。
Let $p$ be a prime and $G$ a pro-$p$ group of finite rank that admits a faithful, self-similar action on the $p$-ary rooted tree. We prove that if the set $\{g\in G | g^{p^n}=1\}$ is a nontrivial subgroup for some $n$, then $G$ is a finite $p$-group with exponent at most $p^n$. This applies in particular to power abelian $p$-groups.