{"title":"基于神经网络的视觉问答系统在学前语言教育中的应用","authors":"Ying Cheng","doi":"10.5573/ieiespc.2023.12.5.419","DOIUrl":null,"url":null,"abstract":"The continuous progress of modern science and technology has led to comprehensive innovations in education, and the use of information technology for teaching has become the mainstream in the current education field. For children’s preschool language education, the application of a visual question answering (VQA) system has gradually become a new development power. This research uses a Recurrent Neural Network and a VGGNet-16 network to extract features from text and images, respectively, and applies a Hierarchical Joint Attention (HJA) model to the whole VQA system. Experiment results demonstrate that the HJA model reaches the target accuracy after 125 iterations, and convergence performance is good. When using the VQAv1 dataset, accuracy can stabilize at 88% after 18 iterations, and when using the VQAv2 dataset, the highest and lowest overall accuracy rates are 77% and 72%, respectively. The three question types (Num, Y/N, and Other) are answered with high accuracy when using the chosen preschool language education database for children, providing accuracy rates of 90%, 94%, and 91%, respectively. This new reference technique offers a new method for maximization of a VQA system, and significantly raises the preschool language education level of the children.","PeriodicalId":37326,"journal":{"name":"IEIE Transactions on Smart Processing and Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a Neural Network-based Visual Question Answering System in Preschool Language Education\",\"authors\":\"Ying Cheng\",\"doi\":\"10.5573/ieiespc.2023.12.5.419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuous progress of modern science and technology has led to comprehensive innovations in education, and the use of information technology for teaching has become the mainstream in the current education field. For children’s preschool language education, the application of a visual question answering (VQA) system has gradually become a new development power. This research uses a Recurrent Neural Network and a VGGNet-16 network to extract features from text and images, respectively, and applies a Hierarchical Joint Attention (HJA) model to the whole VQA system. Experiment results demonstrate that the HJA model reaches the target accuracy after 125 iterations, and convergence performance is good. When using the VQAv1 dataset, accuracy can stabilize at 88% after 18 iterations, and when using the VQAv2 dataset, the highest and lowest overall accuracy rates are 77% and 72%, respectively. The three question types (Num, Y/N, and Other) are answered with high accuracy when using the chosen preschool language education database for children, providing accuracy rates of 90%, 94%, and 91%, respectively. This new reference technique offers a new method for maximization of a VQA system, and significantly raises the preschool language education level of the children.\",\"PeriodicalId\":37326,\"journal\":{\"name\":\"IEIE Transactions on Smart Processing and Computing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEIE Transactions on Smart Processing and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5573/ieiespc.2023.12.5.419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEIE Transactions on Smart Processing and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5573/ieiespc.2023.12.5.419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Application of a Neural Network-based Visual Question Answering System in Preschool Language Education
The continuous progress of modern science and technology has led to comprehensive innovations in education, and the use of information technology for teaching has become the mainstream in the current education field. For children’s preschool language education, the application of a visual question answering (VQA) system has gradually become a new development power. This research uses a Recurrent Neural Network and a VGGNet-16 network to extract features from text and images, respectively, and applies a Hierarchical Joint Attention (HJA) model to the whole VQA system. Experiment results demonstrate that the HJA model reaches the target accuracy after 125 iterations, and convergence performance is good. When using the VQAv1 dataset, accuracy can stabilize at 88% after 18 iterations, and when using the VQAv2 dataset, the highest and lowest overall accuracy rates are 77% and 72%, respectively. The three question types (Num, Y/N, and Other) are answered with high accuracy when using the chosen preschool language education database for children, providing accuracy rates of 90%, 94%, and 91%, respectively. This new reference technique offers a new method for maximization of a VQA system, and significantly raises the preschool language education level of the children.
期刊介绍:
IEIE Transactions on Smart Processing & Computing (IEIE SPC) is a regular academic journal published by the IEIE (Institute of Electronics and Information Engineers). This journal is published bimonthly (the end of February, April, June, August, October, and December). The topics of the new journal include smart signal processing, smart wireless communications, and smart computing. Since all electronic devices have become human brain-like, signal processing, wireless communications, and computing are required to be smarter than traditional systems. Additionally, electronic computing devices have become smaller, and more mobile. Thus, we call for papers sharing the results of the state-of-art research in various fields of interest. In order to quickly disseminate new technologies and ideas for the smart signal processing, wireless communications, and computing, we publish our journal online only. Our most important aim is to publish the accepted papers quickly after receiving the manuscript. Our journal consists of regular and special issue papers. The papers are strictly peer-reviewed. Both theoretical and practical contributions are encouraged for our Transactions.