超对称LLT多项式的顶点模型

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Andrew Gitlin, David Keating
{"title":"超对称LLT多项式的顶点模型","authors":"Andrew Gitlin, David Keating","doi":"10.4171/aihpd/171","DOIUrl":null,"url":null,"abstract":"We describe a Yang–Baxter integrable vertex model, which can be realized as a degeneration of a vertex model introduced by Aggarwal, Borodin, and Wheeler (2021). From this vertex model, we construct a certain class of partition functions that we show are essentially equal to the super ribbon functions of Lam. Using the vertex model formalism, we give proofs of many properties of these polynomials, namely a Cauchy identity and generalizations of known identities for supersymmetric Schur polynomials.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A vertex model for supersymmetric LLT polynomials\",\"authors\":\"Andrew Gitlin, David Keating\",\"doi\":\"10.4171/aihpd/171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a Yang–Baxter integrable vertex model, which can be realized as a degeneration of a vertex model introduced by Aggarwal, Borodin, and Wheeler (2021). From this vertex model, we construct a certain class of partition functions that we show are essentially equal to the super ribbon functions of Lam. Using the vertex model formalism, we give proofs of many properties of these polynomials, namely a Cauchy identity and generalizations of known identities for supersymmetric Schur polynomials.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpd/171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpd/171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 3

摘要

我们描述了一个Yang-Baxter可积顶点模型,它可以作为Aggarwal, Borodin和Wheeler(2021)引入的顶点模型的退化来实现。从这个顶点模型出发,我们构造了一类配分函数,我们证明了这些配分函数本质上等于Lam的超带函数。利用顶点模型的形式化给出了这些多项式的许多性质的证明,即超对称舒尔多项式的柯西恒等式和已知恒等式的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A vertex model for supersymmetric LLT polynomials
We describe a Yang–Baxter integrable vertex model, which can be realized as a degeneration of a vertex model introduced by Aggarwal, Borodin, and Wheeler (2021). From this vertex model, we construct a certain class of partition functions that we show are essentially equal to the super ribbon functions of Lam. Using the vertex model formalism, we give proofs of many properties of these polynomials, namely a Cauchy identity and generalizations of known identities for supersymmetric Schur polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信