Deaconu-Renault群拟的扭曲C*-代数的简单性

IF 0.7 2区 数学 Q2 MATHEMATICS
Becky Armstrong, Nathan Brownlowe, Aidan Sims
{"title":"Deaconu-Renault群拟的扭曲C*-代数的简单性","authors":"Becky Armstrong, Nathan Brownlowe, Aidan Sims","doi":"10.4171/jncg/527","DOIUrl":null,"url":null,"abstract":"We consider Deaconu--Renault groupoids associated to actions of finite-rank free abelian monoids by local homeomorphisms of locally compact Hausdorff spaces. We study simplicity of the twisted C*-algebra of such a groupoid determined by a continuous circle-valued groupoid 2-cocycle. When the groupoid is not minimal, this C*-algebra is never simple, so we focus on minimal groupoids. We describe an action of the quotient of the groupoid by the interior of its isotropy on the spectrum of the twisted C*-algebra of the interior of the isotropy. We prove that the twisted groupoid C*-algebra is simple if and only if this action is minimal. We describe applications to crossed products of topological-graph C*-algebras by quasi-free actions.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"4 5","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simplicity of twisted C*-algebras of Deaconu–Renault groupoids\",\"authors\":\"Becky Armstrong, Nathan Brownlowe, Aidan Sims\",\"doi\":\"10.4171/jncg/527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Deaconu--Renault groupoids associated to actions of finite-rank free abelian monoids by local homeomorphisms of locally compact Hausdorff spaces. We study simplicity of the twisted C*-algebra of such a groupoid determined by a continuous circle-valued groupoid 2-cocycle. When the groupoid is not minimal, this C*-algebra is never simple, so we focus on minimal groupoids. We describe an action of the quotient of the groupoid by the interior of its isotropy on the spectrum of the twisted C*-algebra of the interior of the isotropy. We prove that the twisted groupoid C*-algebra is simple if and only if this action is minimal. We describe applications to crossed products of topological-graph C*-algebras by quasi-free actions.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\"4 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/527\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/527","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

利用局部紧化Hausdorff空间的局部同胚,考虑有限秩自由阿贝单群作用下的Deaconu—Renault群拟。研究了由连续圆值群似2-环确定的群似的扭曲C*-代数的简单性。当群非极小时,这个C*代数就不简单了,所以我们关注最小群。我们描述了群拟的商在其各向同性内部对各向同性内部的扭曲C*-代数谱的作用。证明了扭曲群C*-代数是简单的当且仅当这个作用是极小的。描述了准自由作用在拓扑图C*-代数交叉积中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplicity of twisted C*-algebras of Deaconu–Renault groupoids
We consider Deaconu--Renault groupoids associated to actions of finite-rank free abelian monoids by local homeomorphisms of locally compact Hausdorff spaces. We study simplicity of the twisted C*-algebra of such a groupoid determined by a continuous circle-valued groupoid 2-cocycle. When the groupoid is not minimal, this C*-algebra is never simple, so we focus on minimal groupoids. We describe an action of the quotient of the groupoid by the interior of its isotropy on the spectrum of the twisted C*-algebra of the interior of the isotropy. We prove that the twisted groupoid C*-algebra is simple if and only if this action is minimal. We describe applications to crossed products of topological-graph C*-algebras by quasi-free actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信