{"title":"格路与分支连分式:系数为汉克尔全正的stieltje - rogers多项式和Thron-Rogers多项式的无限推广序列","authors":"Mathias Pétréolle, Alan D. Sokal, Bao-Xuan Zhu","doi":"10.1090/memo/1450","DOIUrl":null,"url":null,"abstract":"We define an infinite sequence of generalizations, parametrized by an integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">m \\ge 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of the Stieltjes–Rogers and Thron–Rogers polynomials; they arise as the power-series expansions of some branched continued fractions, and as the generating polynomials for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Dyck and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Schröder paths with height-dependent weights. We prove that all of these sequences of polynomials are coefficientwise Hankel-totally positive, jointly in all the (infinitely many) indeterminates. We then apply this theory to prove the coefficientwise Hankel-total positivity for combinatorially interesting sequences of polynomials. Enumeration of unlabeled ordered trees and forests gives rise to multivariate Fuss–Narayana polynomials and Fuss–Narayana symmetric functions. Enumeration of increasing (labeled) ordered trees and forests gives rise to multivariate Eulerian polynomials and Eulerian symmetric functions, which include the univariate <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>th-order Eulerian polynomials as specializations. We also find branched continued fractions for ratios of contiguous hypergeometric series <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript r Baseline upper F Subscript s\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> </mml:mrow> <mml:mi>r</mml:mi> </mml:msub> <mml:mspace width=\"negativethinmathspace\" /> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_r \\! F_s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for arbitrary <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\"application/x-tex\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s\"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding=\"application/x-tex\">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which generalize Gauss’ continued fraction for ratios of contiguous <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 2 Baseline upper F 1\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mspace width=\"negativethinmathspace\" /> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_2 \\! F_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we prove the coefficientwise Hankel-total positivity. Finally, we extend the branched continued fractions to ratios of contiguous basic hypergeometric series <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript r Baseline phi Subscript s\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> </mml:mrow> <mml:mi>r</mml:mi> </mml:msub> <mml:mspace width=\"negativethinmathspace\" /> <mml:msub> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_r \\! \\phi _s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes–Rogers and Thron–Rogers Polynomials, with Coefficientwise Hankel-Total Positivity\",\"authors\":\"Mathias Pétréolle, Alan D. Sokal, Bao-Xuan Zhu\",\"doi\":\"10.1090/memo/1450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define an infinite sequence of generalizations, parametrized by an integer <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m greater-than-or-equal-to 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">m \\\\ge 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of the Stieltjes–Rogers and Thron–Rogers polynomials; they arise as the power-series expansions of some branched continued fractions, and as the generating polynomials for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Dyck and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Schröder paths with height-dependent weights. We prove that all of these sequences of polynomials are coefficientwise Hankel-totally positive, jointly in all the (infinitely many) indeterminates. We then apply this theory to prove the coefficientwise Hankel-total positivity for combinatorially interesting sequences of polynomials. Enumeration of unlabeled ordered trees and forests gives rise to multivariate Fuss–Narayana polynomials and Fuss–Narayana symmetric functions. Enumeration of increasing (labeled) ordered trees and forests gives rise to multivariate Eulerian polynomials and Eulerian symmetric functions, which include the univariate <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>th-order Eulerian polynomials as specializations. We also find branched continued fractions for ratios of contiguous hypergeometric series <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Subscript r Baseline upper F Subscript s\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> </mml:mrow> <mml:mi>r</mml:mi> </mml:msub> <mml:mspace width=\\\"negativethinmathspace\\\" /> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{}_r \\\\! F_s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for arbitrary <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r\\\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"s\\\"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which generalize Gauss’ continued fraction for ratios of contiguous <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Subscript 2 Baseline upper F 1\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mspace width=\\\"negativethinmathspace\\\" /> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{}_2 \\\\! F_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"s equals 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">s=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we prove the coefficientwise Hankel-total positivity. Finally, we extend the branched continued fractions to ratios of contiguous basic hypergeometric series <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Subscript r Baseline phi Subscript s\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> </mml:mrow> <mml:mi>r</mml:mi> </mml:msub> <mml:mspace width=\\\"negativethinmathspace\\\" /> <mml:msub> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{}_r \\\\! \\\\phi _s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 33
摘要
我们定义了stieltje - rogers和thrn - rogers多项式的无限推广序列,参数化为整数m≥1 m \ge 1;它们是一些分支连分式的幂级数展开式,以及m m m -Dyck和m m -Schröder具有高度相关权重路径的生成多项式。我们证明了所有这些多项式序列在所有(无穷多个)不定式中都是系数上的汉克尔完全正的。然后,我们应用该理论证明了组合感兴趣多项式序列的系数方向上的汉克尔全正性。未标记有序树和森林的枚举产生多元的Fuss-Narayana多项式和Fuss-Narayana对称函数。增加(标记)有序树木和森林的枚举产生多元欧拉多项式和欧拉对称函数,其中包括作为专门化的单变量mm阶欧拉多项式。我们还发现了连续超几何级数r F s {}_r \!F_s对于任意r r和ss,它推广了高斯连续分数对于连续的2个F 1{} _2 \!F_1;当s=0时,证明了系数的汉克尔全正性。最后,我们将分支连分数推广到连续的基本超几何级数r φ s {}_r \!\phi _s。
Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes–Rogers and Thron–Rogers Polynomials, with Coefficientwise Hankel-Total Positivity
We define an infinite sequence of generalizations, parametrized by an integer m≥1m \ge 1, of the Stieltjes–Rogers and Thron–Rogers polynomials; they arise as the power-series expansions of some branched continued fractions, and as the generating polynomials for mm-Dyck and mm-Schröder paths with height-dependent weights. We prove that all of these sequences of polynomials are coefficientwise Hankel-totally positive, jointly in all the (infinitely many) indeterminates. We then apply this theory to prove the coefficientwise Hankel-total positivity for combinatorially interesting sequences of polynomials. Enumeration of unlabeled ordered trees and forests gives rise to multivariate Fuss–Narayana polynomials and Fuss–Narayana symmetric functions. Enumeration of increasing (labeled) ordered trees and forests gives rise to multivariate Eulerian polynomials and Eulerian symmetric functions, which include the univariate mmth-order Eulerian polynomials as specializations. We also find branched continued fractions for ratios of contiguous hypergeometric series rFs{}_r \! F_s for arbitrary rr and ss, which generalize Gauss’ continued fraction for ratios of contiguous 2F1{}_2 \! F_1; and for s=0s=0 we prove the coefficientwise Hankel-total positivity. Finally, we extend the branched continued fractions to ratios of contiguous basic hypergeometric series rϕs{}_r \! \phi _s.