格路与分支连分式:系数为汉克尔全正的stieltje - rogers多项式和Thron-Rogers多项式的无限推广序列

IF 2 4区 数学 Q1 MATHEMATICS
Mathias Pétréolle, Alan D. Sokal, Bao-Xuan Zhu
{"title":"格路与分支连分式:系数为汉克尔全正的stieltje - rogers多项式和Thron-Rogers多项式的无限推广序列","authors":"Mathias Pétréolle, Alan D. Sokal, Bao-Xuan Zhu","doi":"10.1090/memo/1450","DOIUrl":null,"url":null,"abstract":"We define an infinite sequence of generalizations, parametrized by an integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">m \\ge 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of the Stieltjes–Rogers and Thron–Rogers polynomials; they arise as the power-series expansions of some branched continued fractions, and as the generating polynomials for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Dyck and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Schröder paths with height-dependent weights. We prove that all of these sequences of polynomials are coefficientwise Hankel-totally positive, jointly in all the (infinitely many) indeterminates. We then apply this theory to prove the coefficientwise Hankel-total positivity for combinatorially interesting sequences of polynomials. Enumeration of unlabeled ordered trees and forests gives rise to multivariate Fuss–Narayana polynomials and Fuss–Narayana symmetric functions. Enumeration of increasing (labeled) ordered trees and forests gives rise to multivariate Eulerian polynomials and Eulerian symmetric functions, which include the univariate <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>th-order Eulerian polynomials as specializations. We also find branched continued fractions for ratios of contiguous hypergeometric series <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript r Baseline upper F Subscript s\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> </mml:mrow> <mml:mi>r</mml:mi> </mml:msub> <mml:mspace width=\"negativethinmathspace\" /> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_r \\! F_s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for arbitrary <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\"application/x-tex\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s\"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding=\"application/x-tex\">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which generalize Gauss’ continued fraction for ratios of contiguous <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 2 Baseline upper F 1\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mspace width=\"negativethinmathspace\" /> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_2 \\! F_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">s=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we prove the coefficientwise Hankel-total positivity. Finally, we extend the branched continued fractions to ratios of contiguous basic hypergeometric series <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript r Baseline phi Subscript s\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> </mml:mrow> <mml:mi>r</mml:mi> </mml:msub> <mml:mspace width=\"negativethinmathspace\" /> <mml:msub> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_r \\! \\phi _s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"2 4","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes–Rogers and Thron–Rogers Polynomials, with Coefficientwise Hankel-Total Positivity\",\"authors\":\"Mathias Pétréolle, Alan D. Sokal, Bao-Xuan Zhu\",\"doi\":\"10.1090/memo/1450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define an infinite sequence of generalizations, parametrized by an integer <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m greater-than-or-equal-to 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">m \\\\ge 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of the Stieltjes–Rogers and Thron–Rogers polynomials; they arise as the power-series expansions of some branched continued fractions, and as the generating polynomials for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Dyck and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Schröder paths with height-dependent weights. We prove that all of these sequences of polynomials are coefficientwise Hankel-totally positive, jointly in all the (infinitely many) indeterminates. We then apply this theory to prove the coefficientwise Hankel-total positivity for combinatorially interesting sequences of polynomials. Enumeration of unlabeled ordered trees and forests gives rise to multivariate Fuss–Narayana polynomials and Fuss–Narayana symmetric functions. Enumeration of increasing (labeled) ordered trees and forests gives rise to multivariate Eulerian polynomials and Eulerian symmetric functions, which include the univariate <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m\\\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>th-order Eulerian polynomials as specializations. We also find branched continued fractions for ratios of contiguous hypergeometric series <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Subscript r Baseline upper F Subscript s\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> </mml:mrow> <mml:mi>r</mml:mi> </mml:msub> <mml:mspace width=\\\"negativethinmathspace\\\" /> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{}_r \\\\! F_s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for arbitrary <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r\\\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"s\\\"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which generalize Gauss’ continued fraction for ratios of contiguous <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Subscript 2 Baseline upper F 1\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mspace width=\\\"negativethinmathspace\\\" /> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{}_2 \\\\! F_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"s equals 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">s=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we prove the coefficientwise Hankel-total positivity. Finally, we extend the branched continued fractions to ratios of contiguous basic hypergeometric series <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Subscript r Baseline phi Subscript s\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> </mml:mrow> <mml:mi>r</mml:mi> </mml:msub> <mml:mspace width=\\\"negativethinmathspace\\\" /> <mml:msub> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{}_r \\\\! \\\\phi _s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\"2 4\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1450\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1450","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 33

摘要

我们定义了stieltje - rogers和thrn - rogers多项式的无限推广序列,参数化为整数m≥1 m \ge 1;它们是一些分支连分式的幂级数展开式,以及m m m -Dyck和m m -Schröder具有高度相关权重路径的生成多项式。我们证明了所有这些多项式序列在所有(无穷多个)不定式中都是系数上的汉克尔完全正的。然后,我们应用该理论证明了组合感兴趣多项式序列的系数方向上的汉克尔全正性。未标记有序树和森林的枚举产生多元的Fuss-Narayana多项式和Fuss-Narayana对称函数。增加(标记)有序树木和森林的枚举产生多元欧拉多项式和欧拉对称函数,其中包括作为专门化的单变量mm阶欧拉多项式。我们还发现了连续超几何级数r F s {}_r \!F_s对于任意r r和ss,它推广了高斯连续分数对于连续的2个F 1{} _2 \!F_1;当s=0时,证明了系数的汉克尔全正性。最后,我们将分支连分数推广到连续的基本超几何级数r φ s {}_r \!\phi _s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes–Rogers and Thron–Rogers Polynomials, with Coefficientwise Hankel-Total Positivity
We define an infinite sequence of generalizations, parametrized by an integer m 1 m \ge 1 , of the Stieltjes–Rogers and Thron–Rogers polynomials; they arise as the power-series expansions of some branched continued fractions, and as the generating polynomials for m m -Dyck and m m -Schröder paths with height-dependent weights. We prove that all of these sequences of polynomials are coefficientwise Hankel-totally positive, jointly in all the (infinitely many) indeterminates. We then apply this theory to prove the coefficientwise Hankel-total positivity for combinatorially interesting sequences of polynomials. Enumeration of unlabeled ordered trees and forests gives rise to multivariate Fuss–Narayana polynomials and Fuss–Narayana symmetric functions. Enumeration of increasing (labeled) ordered trees and forests gives rise to multivariate Eulerian polynomials and Eulerian symmetric functions, which include the univariate m m th-order Eulerian polynomials as specializations. We also find branched continued fractions for ratios of contiguous hypergeometric series r F s {}_r \! F_s for arbitrary r r and s s , which generalize Gauss’ continued fraction for ratios of contiguous 2 F 1 {}_2 \! F_1 ; and for s = 0 s=0 we prove the coefficientwise Hankel-total positivity. Finally, we extend the branched continued fractions to ratios of contiguous basic hypergeometric series r ϕ s {}_r \! \phi _s .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信