基于运动学分析模型的成本约束液压膝关节假体优化

Lucas Galey, Guillermo Beckmann, Ethan Ramos, Frances A. Rangel, Roger V. Gonzalez
{"title":"基于运动学分析模型的成本约束液压膝关节假体优化","authors":"Lucas Galey, Guillermo Beckmann, Ethan Ramos, Frances A. Rangel, Roger V. Gonzalez","doi":"10.3390/biomechanics3040040","DOIUrl":null,"url":null,"abstract":"Approximately 82% of amputees prefer microprocessor knees (MPKs) to the passive alternatives. However, the cost of these devices makes them inaccessible for many patients. The aim of this research is to develop an affordable MPK that allows for stumble reduction and flexion dampening at a fraction of the cost of similar devices. The GKnee was developed by a sophisticated mathematical model that can effectively calculate geometric configuration and simulate forces transferred through a prosthetic knee at any given point through the gait cycle. With a median error of 6%, the mathematical model was developed to the point of reasonable accuracy for determining component placement and force interactions. The model served as a valuable tool to assist in the iterative design process of the GKnee, influencing component selection for the hydraulic system and frame design. This model was then validated using a compression rig and a mock GKnee prototype. The GKnee was then evaluated for its ability to perform under expected loading conditions, using compression testing and dynamic flexion testing. This research led to the development of a sub USD 500 microprocessor prosthetic, while remaining under 2.27 kg.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of a Cost-Constrained, Hydraulic Knee Prosthesis Using a Kinematic Analysis Model\",\"authors\":\"Lucas Galey, Guillermo Beckmann, Ethan Ramos, Frances A. Rangel, Roger V. Gonzalez\",\"doi\":\"10.3390/biomechanics3040040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximately 82% of amputees prefer microprocessor knees (MPKs) to the passive alternatives. However, the cost of these devices makes them inaccessible for many patients. The aim of this research is to develop an affordable MPK that allows for stumble reduction and flexion dampening at a fraction of the cost of similar devices. The GKnee was developed by a sophisticated mathematical model that can effectively calculate geometric configuration and simulate forces transferred through a prosthetic knee at any given point through the gait cycle. With a median error of 6%, the mathematical model was developed to the point of reasonable accuracy for determining component placement and force interactions. The model served as a valuable tool to assist in the iterative design process of the GKnee, influencing component selection for the hydraulic system and frame design. This model was then validated using a compression rig and a mock GKnee prototype. The GKnee was then evaluated for its ability to perform under expected loading conditions, using compression testing and dynamic flexion testing. This research led to the development of a sub USD 500 microprocessor prosthetic, while remaining under 2.27 kg.\",\"PeriodicalId\":72381,\"journal\":{\"name\":\"Biomechanics (Basel, Switzerland)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomechanics3040040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics3040040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大约82%的截肢者更喜欢微处理器膝盖(mpk)而不是被动的替代品。然而,这些设备的成本使许多患者无法使用。这项研究的目的是开发一种价格合理的MPK,它可以减少磕碰和弯曲,而成本只是类似设备的一小部分。GKnee是由一个复杂的数学模型开发的,该模型可以有效地计算几何构型并模拟在步态周期中任何给定点通过假膝传递的力。该数学模型的中位误差为6%,达到了确定部件位置和力相互作用的合理精度。该模型为GKnee的迭代设计过程提供了有价值的辅助工具,影响了液压系统部件的选择和车架的设计。然后使用压缩装置和模拟GKnee原型验证了该模型。然后通过压缩测试和动态屈曲测试来评估GKnee在预期载荷条件下的性能。这项研究导致了一种低于500美元的微处理器假肢的开发,同时保持在2.27千克以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of a Cost-Constrained, Hydraulic Knee Prosthesis Using a Kinematic Analysis Model
Approximately 82% of amputees prefer microprocessor knees (MPKs) to the passive alternatives. However, the cost of these devices makes them inaccessible for many patients. The aim of this research is to develop an affordable MPK that allows for stumble reduction and flexion dampening at a fraction of the cost of similar devices. The GKnee was developed by a sophisticated mathematical model that can effectively calculate geometric configuration and simulate forces transferred through a prosthetic knee at any given point through the gait cycle. With a median error of 6%, the mathematical model was developed to the point of reasonable accuracy for determining component placement and force interactions. The model served as a valuable tool to assist in the iterative design process of the GKnee, influencing component selection for the hydraulic system and frame design. This model was then validated using a compression rig and a mock GKnee prototype. The GKnee was then evaluated for its ability to perform under expected loading conditions, using compression testing and dynamic flexion testing. This research led to the development of a sub USD 500 microprocessor prosthetic, while remaining under 2.27 kg.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信