河流桥梁干预的优先次序:水文和多维方法

Q2 Engineering
Designs Pub Date : 2023-10-12 DOI:10.3390/designs7050117
Alan Huarca Pulcha, Alain Jorge Espinoza Vigil, Julian Booker
{"title":"河流桥梁干预的优先次序:水文和多维方法","authors":"Alan Huarca Pulcha, Alain Jorge Espinoza Vigil, Julian Booker","doi":"10.3390/designs7050117","DOIUrl":null,"url":null,"abstract":"Globally, most bridges fail due to hydrological causes such as scouring or flooding. Therefore, using a hydrological approach, this study proposes a methodology that contributes to prioritizing the intervention of bridges to prevent their collapse. Through an exhaustive literature review, an evaluation matrix subdivided into four dimensions was developed and a total of 18 evaluation parameters were considered, distributed as follows: four environmental, six technical, four social, and four economic. This matrix was applied to eight bridges with a history of hydrological problems in the same river and validated through semi-structured interviews with specialists. Data were collected through field visits, journalistic information, a review of the gauged basin’s historical hydrological flow rates, and consultations with the population. Modeling was then conducted, which considered the influence of gullies that discharge additional flow using HEC-HMS and HEC-RAS, before being calibrated. The application of the matrix, which is an optimal tool for prioritizing bridge interventions, revealed that five bridges have a high vulnerability with scores between 3 and 3.56, and three bridges have a medium vulnerability with scores between 2.75 and 2.94. The hydrological multidimensional approach, which can be adapted for similar studies, contributes to a better decision-making process for important infrastructure interventions such as riverine bridges.","PeriodicalId":53150,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prioritizing Riverine Bridge Interventions: A Hydrological and Multidimensional Approach\",\"authors\":\"Alan Huarca Pulcha, Alain Jorge Espinoza Vigil, Julian Booker\",\"doi\":\"10.3390/designs7050117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally, most bridges fail due to hydrological causes such as scouring or flooding. Therefore, using a hydrological approach, this study proposes a methodology that contributes to prioritizing the intervention of bridges to prevent their collapse. Through an exhaustive literature review, an evaluation matrix subdivided into four dimensions was developed and a total of 18 evaluation parameters were considered, distributed as follows: four environmental, six technical, four social, and four economic. This matrix was applied to eight bridges with a history of hydrological problems in the same river and validated through semi-structured interviews with specialists. Data were collected through field visits, journalistic information, a review of the gauged basin’s historical hydrological flow rates, and consultations with the population. Modeling was then conducted, which considered the influence of gullies that discharge additional flow using HEC-HMS and HEC-RAS, before being calibrated. The application of the matrix, which is an optimal tool for prioritizing bridge interventions, revealed that five bridges have a high vulnerability with scores between 3 and 3.56, and three bridges have a medium vulnerability with scores between 2.75 and 2.94. The hydrological multidimensional approach, which can be adapted for similar studies, contributes to a better decision-making process for important infrastructure interventions such as riverine bridges.\",\"PeriodicalId\":53150,\"journal\":{\"name\":\"Designs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/designs7050117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/designs7050117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在全球范围内,大多数桥梁因水文原因而倒塌,如冲刷或洪水。因此,使用水文方法,本研究提出了一种有助于优先干预桥梁以防止其倒塌的方法。通过详尽的文献回顾,建立了一个细分为四个维度的评价矩阵,共考虑了18个评价参数,分布如下:4个环境参数、6个技术参数、4个社会参数和4个经济参数。该矩阵应用于同一河流中具有水文问题历史的八座桥梁,并通过与专家的半结构化访谈进行验证。数据是通过实地访问、新闻资料、对测量流域历史水文流量的审查以及与居民协商收集的。然后进行建模,在校准之前,使用HEC-HMS和HEC-RAS考虑了排放附加流量的沟渠的影响。该矩阵是桥梁干预措施优先排序的最优工具,结果表明,5座桥梁的脆弱性得分在3 ~ 3.56之间,为高脆弱性,3座桥梁的脆弱性得分在2.75 ~ 2.94之间,为中等脆弱性。水文多维方法可以适用于类似的研究,有助于为重要的基础设施干预措施(如河流桥梁)提供更好的决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prioritizing Riverine Bridge Interventions: A Hydrological and Multidimensional Approach
Globally, most bridges fail due to hydrological causes such as scouring or flooding. Therefore, using a hydrological approach, this study proposes a methodology that contributes to prioritizing the intervention of bridges to prevent their collapse. Through an exhaustive literature review, an evaluation matrix subdivided into four dimensions was developed and a total of 18 evaluation parameters were considered, distributed as follows: four environmental, six technical, four social, and four economic. This matrix was applied to eight bridges with a history of hydrological problems in the same river and validated through semi-structured interviews with specialists. Data were collected through field visits, journalistic information, a review of the gauged basin’s historical hydrological flow rates, and consultations with the population. Modeling was then conducted, which considered the influence of gullies that discharge additional flow using HEC-HMS and HEC-RAS, before being calibrated. The application of the matrix, which is an optimal tool for prioritizing bridge interventions, revealed that five bridges have a high vulnerability with scores between 3 and 3.56, and three bridges have a medium vulnerability with scores between 2.75 and 2.94. The hydrological multidimensional approach, which can be adapted for similar studies, contributes to a better decision-making process for important infrastructure interventions such as riverine bridges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs
Designs Engineering-Engineering (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信