{"title":"基于多源信息的对抗融合卷积自编码器轴承性能退化评估","authors":"Enxiu Wang, Haoxuan Zhou, Guangrui Wen, Ziling Huang, Zimin Liu, Xuefeng Chen","doi":"10.1177/01423312231190237","DOIUrl":null,"url":null,"abstract":"Bearing operation states will directly determine the performance of the equipment; thus, monitoring operation status and degradation indicators is the key to ensuring continuous and healthy operation of the equipment. However, most of the research uses single-source information data, which makes it difficult to model when dealing with multi-source information, complex data distribution, and noise. In this paper, a bearing performance degradation assessment method based on multi-source information is proposed to comprehensively utilize the data signals of different structures, spaces, types, and sources. First, the adversarial fusion convolutional autoencoder is constructed for obtaining the degradation index of the bearing, while the adversarial learning strategy is applied to achieve the effect of enhancing the robustness and sensitivity of the degradation indicators extracted by the network. Then the degradation index is input into the support vector data description to determine the fault anomalies of the degradation index adaptively and the fuzzy c-means algorithms to obtain the final rolling bearing performance degradation evaluation results. Through the verification results of two experiment datasets, it is found that the proposed model can achieve accurate evaluation and quantitative analysis of the performance degradation process of bearings. As a result, the entire network ensures the reconstruction accuracy of normal samples while simultaneously stretching the reconstruction error of abnormal samples to achieve accurate monitoring of degradation onset.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"108 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bearing performance degradation assessment using adversarial fusion convolutional autoencoder based on multi-source information\",\"authors\":\"Enxiu Wang, Haoxuan Zhou, Guangrui Wen, Ziling Huang, Zimin Liu, Xuefeng Chen\",\"doi\":\"10.1177/01423312231190237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bearing operation states will directly determine the performance of the equipment; thus, monitoring operation status and degradation indicators is the key to ensuring continuous and healthy operation of the equipment. However, most of the research uses single-source information data, which makes it difficult to model when dealing with multi-source information, complex data distribution, and noise. In this paper, a bearing performance degradation assessment method based on multi-source information is proposed to comprehensively utilize the data signals of different structures, spaces, types, and sources. First, the adversarial fusion convolutional autoencoder is constructed for obtaining the degradation index of the bearing, while the adversarial learning strategy is applied to achieve the effect of enhancing the robustness and sensitivity of the degradation indicators extracted by the network. Then the degradation index is input into the support vector data description to determine the fault anomalies of the degradation index adaptively and the fuzzy c-means algorithms to obtain the final rolling bearing performance degradation evaluation results. Through the verification results of two experiment datasets, it is found that the proposed model can achieve accurate evaluation and quantitative analysis of the performance degradation process of bearings. As a result, the entire network ensures the reconstruction accuracy of normal samples while simultaneously stretching the reconstruction error of abnormal samples to achieve accurate monitoring of degradation onset.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312231190237\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312231190237","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Bearing performance degradation assessment using adversarial fusion convolutional autoencoder based on multi-source information
Bearing operation states will directly determine the performance of the equipment; thus, monitoring operation status and degradation indicators is the key to ensuring continuous and healthy operation of the equipment. However, most of the research uses single-source information data, which makes it difficult to model when dealing with multi-source information, complex data distribution, and noise. In this paper, a bearing performance degradation assessment method based on multi-source information is proposed to comprehensively utilize the data signals of different structures, spaces, types, and sources. First, the adversarial fusion convolutional autoencoder is constructed for obtaining the degradation index of the bearing, while the adversarial learning strategy is applied to achieve the effect of enhancing the robustness and sensitivity of the degradation indicators extracted by the network. Then the degradation index is input into the support vector data description to determine the fault anomalies of the degradation index adaptively and the fuzzy c-means algorithms to obtain the final rolling bearing performance degradation evaluation results. Through the verification results of two experiment datasets, it is found that the proposed model can achieve accurate evaluation and quantitative analysis of the performance degradation process of bearings. As a result, the entire network ensures the reconstruction accuracy of normal samples while simultaneously stretching the reconstruction error of abnormal samples to achieve accurate monitoring of degradation onset.
期刊介绍:
Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.