基于纳米纤维的光偶极子阱中碱土原子的状态不敏感捕获

IF 11 Q1 PHYSICS, APPLIED
G. Kestler, K. Ton, D. Filin, C. Cheung, P. Schneeweiss, T. Hoinkes, J. Volz, M.S. Safronova, A. Rauschenbeutel, J.T. Barreiro
{"title":"基于纳米纤维的光偶极子阱中碱土原子的状态不敏感捕获","authors":"G. Kestler, K. Ton, D. Filin, C. Cheung, P. Schneeweiss, T. Hoinkes, J. Volz, M.S. Safronova, A. Rauschenbeutel, J.T. Barreiro","doi":"10.1103/prxquantum.4.040308","DOIUrl":null,"url":null,"abstract":"Neutral atoms that are optically trapped using the evanescent fields surrounding optical nanofibers are a promising platform for developing quantum technologies and exploring fundamental science, such as quantum networks and many-body physics of interacting photons. Building on the successful advancements with trapped alkali atoms, here we trap strontium-88 atoms, an alkaline-earth element, in a state-insensitive, nanofiber-based optical dipole trap using the evanescent fields of an optical nanofiber. Employing a two-color, double magic-wavelength trapping scheme, we realize state-insensitive trapping of the atoms for the kilohertz-wide 5s21S0−5s5p3P1,|m|=1 intercombination transition, which we verify by performing high-resolution spectroscopy for an atom-surface distance of about 300 nm. This allows us to experimentally find and verify the state insensitivity of the trap nearby a theoretically predicted magic wavelength of 435.827(25) nm, a necessary step to confirm precision atomic physics calculations. Alkaline-earth atoms also exhibit nonmagnetic ground states and ultranarrow linewidth transitions making them ideal candidates for atomic clocks and precision metrology applications, especially with state-insensitive traps. Additionally, given the low collisional scattering length specific to strontium-88, this work also lays the foundation for developing versatile and robust matter-wave atomtronic circuits over nanophotonic waveguides.9 MoreReceived 7 February 2023Accepted 7 September 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040308Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasCooling & trappingLight-matter interactionPhotonicsPropertiesPolarizabilityAtomic, Molecular & OpticalQuantum Information, Science & Technology","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"91 1","pages":"0"},"PeriodicalIF":11.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"State-Insensitive Trapping of Alkaline-Earth Atoms in a Nanofiber-Based Optical Dipole Trap\",\"authors\":\"G. Kestler, K. Ton, D. Filin, C. Cheung, P. Schneeweiss, T. Hoinkes, J. Volz, M.S. Safronova, A. Rauschenbeutel, J.T. Barreiro\",\"doi\":\"10.1103/prxquantum.4.040308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neutral atoms that are optically trapped using the evanescent fields surrounding optical nanofibers are a promising platform for developing quantum technologies and exploring fundamental science, such as quantum networks and many-body physics of interacting photons. Building on the successful advancements with trapped alkali atoms, here we trap strontium-88 atoms, an alkaline-earth element, in a state-insensitive, nanofiber-based optical dipole trap using the evanescent fields of an optical nanofiber. Employing a two-color, double magic-wavelength trapping scheme, we realize state-insensitive trapping of the atoms for the kilohertz-wide 5s21S0−5s5p3P1,|m|=1 intercombination transition, which we verify by performing high-resolution spectroscopy for an atom-surface distance of about 300 nm. This allows us to experimentally find and verify the state insensitivity of the trap nearby a theoretically predicted magic wavelength of 435.827(25) nm, a necessary step to confirm precision atomic physics calculations. Alkaline-earth atoms also exhibit nonmagnetic ground states and ultranarrow linewidth transitions making them ideal candidates for atomic clocks and precision metrology applications, especially with state-insensitive traps. Additionally, given the low collisional scattering length specific to strontium-88, this work also lays the foundation for developing versatile and robust matter-wave atomtronic circuits over nanophotonic waveguides.9 MoreReceived 7 February 2023Accepted 7 September 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040308Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasCooling & trappingLight-matter interactionPhotonicsPropertiesPolarizabilityAtomic, Molecular & OpticalQuantum Information, Science & Technology\",\"PeriodicalId\":74587,\"journal\":{\"name\":\"PRX quantum : a Physical Review journal\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX quantum : a Physical Review journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.4.040308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.4.040308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

利用光纳米纤维周围的倏逝场捕获的中性原子是发展量子技术和探索基础科学(如量子网络和相互作用光子的多体物理)的一个有前途的平台。在捕获碱原子的成功进展的基础上,我们利用纳米光纤的倏逝场在状态不敏感的纳米纤维基光学偶极子阱中捕获了锶-88原子(碱土元素)。采用双色、双魔法波长捕获方案,我们实现了千赫兹宽5s21S0−555p3p1,|m|=1互组合跃迁的原子状态不敏感捕获,并在原子表面距离约300 nm处进行了高分辨率光谱验证。这使我们能够通过实验发现并验证陷阱在理论预测的神奇波长435.827(25)nm附近的不敏感状态,这是确认精确原子物理计算的必要步骤。碱土原子还表现出非磁性基态和超窄线宽跃迁,使它们成为原子钟和精密计量应用的理想候选者,特别是具有状态不敏感的陷阱。此外,考虑到锶-88特有的低碰撞散射长度,这项工作也为在纳米光子波导上开发多功能和健壮的物质波原子电子电路奠定了基础根据知识共享署名4.0国际许可协议,美国物理学会doi:https://doi.org/10.1103/PRXQuantum.4.040308Published。这项工作的进一步分发必须保持作者的归属和已发表文章的标题,期刊引用和DOI。发表于美国物理学会物理学科标题(PhySH)研究领域:冷却与捕获,光-物质相互作用,光子学性质,偏振性,原子,分子和光量子信息,科学与技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。

State-Insensitive Trapping of Alkaline-Earth Atoms in a Nanofiber-Based Optical Dipole Trap

State-Insensitive Trapping of Alkaline-Earth Atoms in a Nanofiber-Based Optical Dipole Trap
Neutral atoms that are optically trapped using the evanescent fields surrounding optical nanofibers are a promising platform for developing quantum technologies and exploring fundamental science, such as quantum networks and many-body physics of interacting photons. Building on the successful advancements with trapped alkali atoms, here we trap strontium-88 atoms, an alkaline-earth element, in a state-insensitive, nanofiber-based optical dipole trap using the evanescent fields of an optical nanofiber. Employing a two-color, double magic-wavelength trapping scheme, we realize state-insensitive trapping of the atoms for the kilohertz-wide 5s21S0−5s5p3P1,|m|=1 intercombination transition, which we verify by performing high-resolution spectroscopy for an atom-surface distance of about 300 nm. This allows us to experimentally find and verify the state insensitivity of the trap nearby a theoretically predicted magic wavelength of 435.827(25) nm, a necessary step to confirm precision atomic physics calculations. Alkaline-earth atoms also exhibit nonmagnetic ground states and ultranarrow linewidth transitions making them ideal candidates for atomic clocks and precision metrology applications, especially with state-insensitive traps. Additionally, given the low collisional scattering length specific to strontium-88, this work also lays the foundation for developing versatile and robust matter-wave atomtronic circuits over nanophotonic waveguides.9 MoreReceived 7 February 2023Accepted 7 September 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040308Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasCooling & trappingLight-matter interactionPhotonicsPropertiesPolarizabilityAtomic, Molecular & OpticalQuantum Information, Science & Technology
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信