Mani Sasi Kumar, Selvaraj Sathish, Mani Makeshkumar, Sivanantham Gokulkumar
{"title":"木槿和花楸植物纤维增强杂化环氧复合材料的吸水性能和力学性能实验研究:纳米石墨烯填料重量分数的影响","authors":"Mani Sasi Kumar, Selvaraj Sathish, Mani Makeshkumar, Sivanantham Gokulkumar","doi":"10.1515/ipp-2023-4398","DOIUrl":null,"url":null,"abstract":"Abstract This study aimed to develop novel hybrid composites with graphene (Gr) fillers incorporated in the epoxy (E) matrix with Caesar weed fiber (CF), and roselle fiber (RF) as reinforcements. Compression molding methods were used to fabricate hybrid composite materials with a variable-weight graphene filler in a constant fiber epoxy matrix. On the basis of the results, the mechanical characteristics of the composite with 6 wt% Gr exhibited the greatest flexural strength, tensile strength, and impact strength. This occurred because 6 wt% Gr particles are more uniformly dispersed in an epoxy matrix, resulting in better compatibility between reinforcement and matrix, thus increasing the mechanical properties. The composite with 8 wt% Gr filler reinforcement had the maximum hardness rating and the lowest percentage of water absorption. According to the results, adding graphene fillers to the CF/RF/E composite significantly improved the mechanical and water absorption performances. Scanning electron microscopy was used to examine the surfaces of the fabricated samples. The weight fraction of the graphene filler was optimized to enhance the mechanical properties of the composite for use in various engineering applications, such as automobile, defense, marine, sports, and musical instruments.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":"51 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental studies on water absorption and mechanical properties of <i>Hibiscus</i> <i>s</i> <i>abdariffa</i> (Roselle) and <i>Urena</i> <i>lobata</i> (Caesar weed) plant Fiber–Reinforced hybrid epoxy composites: effect of weight fraction of nano-graphene fillers\",\"authors\":\"Mani Sasi Kumar, Selvaraj Sathish, Mani Makeshkumar, Sivanantham Gokulkumar\",\"doi\":\"10.1515/ipp-2023-4398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study aimed to develop novel hybrid composites with graphene (Gr) fillers incorporated in the epoxy (E) matrix with Caesar weed fiber (CF), and roselle fiber (RF) as reinforcements. Compression molding methods were used to fabricate hybrid composite materials with a variable-weight graphene filler in a constant fiber epoxy matrix. On the basis of the results, the mechanical characteristics of the composite with 6 wt% Gr exhibited the greatest flexural strength, tensile strength, and impact strength. This occurred because 6 wt% Gr particles are more uniformly dispersed in an epoxy matrix, resulting in better compatibility between reinforcement and matrix, thus increasing the mechanical properties. The composite with 8 wt% Gr filler reinforcement had the maximum hardness rating and the lowest percentage of water absorption. According to the results, adding graphene fillers to the CF/RF/E composite significantly improved the mechanical and water absorption performances. Scanning electron microscopy was used to examine the surfaces of the fabricated samples. The weight fraction of the graphene filler was optimized to enhance the mechanical properties of the composite for use in various engineering applications, such as automobile, defense, marine, sports, and musical instruments.\",\"PeriodicalId\":14410,\"journal\":{\"name\":\"International Polymer Processing\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Polymer Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2023-4398\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4398","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Experimental studies on water absorption and mechanical properties of Hibiscussabdariffa (Roselle) and Urenalobata (Caesar weed) plant Fiber–Reinforced hybrid epoxy composites: effect of weight fraction of nano-graphene fillers
Abstract This study aimed to develop novel hybrid composites with graphene (Gr) fillers incorporated in the epoxy (E) matrix with Caesar weed fiber (CF), and roselle fiber (RF) as reinforcements. Compression molding methods were used to fabricate hybrid composite materials with a variable-weight graphene filler in a constant fiber epoxy matrix. On the basis of the results, the mechanical characteristics of the composite with 6 wt% Gr exhibited the greatest flexural strength, tensile strength, and impact strength. This occurred because 6 wt% Gr particles are more uniformly dispersed in an epoxy matrix, resulting in better compatibility between reinforcement and matrix, thus increasing the mechanical properties. The composite with 8 wt% Gr filler reinforcement had the maximum hardness rating and the lowest percentage of water absorption. According to the results, adding graphene fillers to the CF/RF/E composite significantly improved the mechanical and water absorption performances. Scanning electron microscopy was used to examine the surfaces of the fabricated samples. The weight fraction of the graphene filler was optimized to enhance the mechanical properties of the composite for use in various engineering applications, such as automobile, defense, marine, sports, and musical instruments.
期刊介绍:
International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.