{"title":"多深度探测三维微电极阵列记录神经培养物内电生理活动的研制","authors":"Neeraj Yadav, Donatella Di Lisa, Flavio Giacomozzi, Alessandro Cian, Damiano Giubertoni, Sergio Martinoia, Leandro Lorenzelli","doi":"10.1088/1361-6439/acf940","DOIUrl":null,"url":null,"abstract":"Abstract Microelectrode arrays (MEAs) play a crucial role in investigating the electrophysiological activities of neuronal populations. Although two-dimensional neuronal cell cultures have predominated in neurophysiology in monitoring in-vitro the electrophysiological activity, recent research shifted toward culture using three-dimensional (3D) neuronal network structures for developing more sophisticated and realistic neuronal models. Nevertheless, many challenges remain in the electrophysiological analysis of 3D neuron cultures, among them the development of robust platforms for investigating the electrophysiological signal at multiple depths of the 3D neurons’ networks. While various 3D MEAs have been developed to probe specific depths within the layered nervous system, the fabrication of microelectrodes with different heights, capable of probing neural activity from the surface as well as from the different layers within the neural construct, remains challenging. This study presents a novel 3D MEA with microelectrodes of different heights, realized through a multi-stage mold-assisted electrodeposition process. Our pioneering platform allows meticulous control over the height of individual microelectrodes as well as the array topology, paving the way for the fabrication of 3D MEAs consisting of electrodes with multiple heights that could be tailored for specific applications and experiments. The device performance was characterized by measuring electrochemical impedance, and noise, and capturing spontaneous electrophysiological activity from neurospheroids derived from human induced pluripotent stem cells. These evaluations unequivocally validated the significant potential of our innovative multi-height 3D MEA as an avant-garde platform for in vitro 3D neuronal studies.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"41 9 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Multi-depth Probing 3D Microelectrode Array to Record Electrophysiological Activity within Neural Cultures\",\"authors\":\"Neeraj Yadav, Donatella Di Lisa, Flavio Giacomozzi, Alessandro Cian, Damiano Giubertoni, Sergio Martinoia, Leandro Lorenzelli\",\"doi\":\"10.1088/1361-6439/acf940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Microelectrode arrays (MEAs) play a crucial role in investigating the electrophysiological activities of neuronal populations. Although two-dimensional neuronal cell cultures have predominated in neurophysiology in monitoring in-vitro the electrophysiological activity, recent research shifted toward culture using three-dimensional (3D) neuronal network structures for developing more sophisticated and realistic neuronal models. Nevertheless, many challenges remain in the electrophysiological analysis of 3D neuron cultures, among them the development of robust platforms for investigating the electrophysiological signal at multiple depths of the 3D neurons’ networks. While various 3D MEAs have been developed to probe specific depths within the layered nervous system, the fabrication of microelectrodes with different heights, capable of probing neural activity from the surface as well as from the different layers within the neural construct, remains challenging. This study presents a novel 3D MEA with microelectrodes of different heights, realized through a multi-stage mold-assisted electrodeposition process. Our pioneering platform allows meticulous control over the height of individual microelectrodes as well as the array topology, paving the way for the fabrication of 3D MEAs consisting of electrodes with multiple heights that could be tailored for specific applications and experiments. The device performance was characterized by measuring electrochemical impedance, and noise, and capturing spontaneous electrophysiological activity from neurospheroids derived from human induced pluripotent stem cells. These evaluations unequivocally validated the significant potential of our innovative multi-height 3D MEA as an avant-garde platform for in vitro 3D neuronal studies.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\"41 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/acf940\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6439/acf940","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Development of Multi-depth Probing 3D Microelectrode Array to Record Electrophysiological Activity within Neural Cultures
Abstract Microelectrode arrays (MEAs) play a crucial role in investigating the electrophysiological activities of neuronal populations. Although two-dimensional neuronal cell cultures have predominated in neurophysiology in monitoring in-vitro the electrophysiological activity, recent research shifted toward culture using three-dimensional (3D) neuronal network structures for developing more sophisticated and realistic neuronal models. Nevertheless, many challenges remain in the electrophysiological analysis of 3D neuron cultures, among them the development of robust platforms for investigating the electrophysiological signal at multiple depths of the 3D neurons’ networks. While various 3D MEAs have been developed to probe specific depths within the layered nervous system, the fabrication of microelectrodes with different heights, capable of probing neural activity from the surface as well as from the different layers within the neural construct, remains challenging. This study presents a novel 3D MEA with microelectrodes of different heights, realized through a multi-stage mold-assisted electrodeposition process. Our pioneering platform allows meticulous control over the height of individual microelectrodes as well as the array topology, paving the way for the fabrication of 3D MEAs consisting of electrodes with multiple heights that could be tailored for specific applications and experiments. The device performance was characterized by measuring electrochemical impedance, and noise, and capturing spontaneous electrophysiological activity from neurospheroids derived from human induced pluripotent stem cells. These evaluations unequivocally validated the significant potential of our innovative multi-height 3D MEA as an avant-garde platform for in vitro 3D neuronal studies.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.