基于大语言模型的生成式药物-药物相互作用三联体提取框架

Q3 Social Sciences
Haotian Hu, Alex Jie Yang, Sanhong Deng, Dongbo Wang, Min Song, Si Shen
{"title":"基于大语言模型的生成式药物-药物相互作用三联体提取框架","authors":"Haotian Hu, Alex Jie Yang, Sanhong Deng, Dongbo Wang, Min Song, Si Shen","doi":"10.1002/pra2.918","DOIUrl":null,"url":null,"abstract":"ABSTRACT Drug–Drug Interaction (DDI) may affect the activity and efficacy of drugs, potentially leading to diminished therapeutic effect or even serious side effects. Therefore, automatic recognition of drug entities and relations involved in DDI is of great significance for pharmaceutical and medical care. In this paper, we propose a generative DDI triplets extraction framework based on Large Language Models (LLMs). We comprehensively apply various training methods, such as In‐context learning, Instruction‐tuning, and Task‐tuning, to investigate the biomedical information extraction capabilities of GPT‐3, OPT, and LLaMA. We also introduce Low‐Rank Adaptation (LoRA) technology to significantly reduce trainable parameters. The proposed method achieves satisfactory results in DDI triplet extraction, and demonstrates strong generalization ability on similar corpus.","PeriodicalId":37833,"journal":{"name":"Proceedings of the Association for Information Science and Technology","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generative <scp>Drug–Drug</scp> Interaction Triplets Extraction Framework Based on Large Language Models\",\"authors\":\"Haotian Hu, Alex Jie Yang, Sanhong Deng, Dongbo Wang, Min Song, Si Shen\",\"doi\":\"10.1002/pra2.918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Drug–Drug Interaction (DDI) may affect the activity and efficacy of drugs, potentially leading to diminished therapeutic effect or even serious side effects. Therefore, automatic recognition of drug entities and relations involved in DDI is of great significance for pharmaceutical and medical care. In this paper, we propose a generative DDI triplets extraction framework based on Large Language Models (LLMs). We comprehensively apply various training methods, such as In‐context learning, Instruction‐tuning, and Task‐tuning, to investigate the biomedical information extraction capabilities of GPT‐3, OPT, and LLaMA. We also introduce Low‐Rank Adaptation (LoRA) technology to significantly reduce trainable parameters. The proposed method achieves satisfactory results in DDI triplet extraction, and demonstrates strong generalization ability on similar corpus.\",\"PeriodicalId\":37833,\"journal\":{\"name\":\"Proceedings of the Association for Information Science and Technology\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Association for Information Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pra2.918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Association for Information Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pra2.918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

药物-药物相互作用(DDI)可能影响药物的活性和疗效,可能导致治疗效果下降甚至严重的副作用。因此,自动识别DDI中涉及的药品实体及其关系,对药学和医疗保健具有重要意义。本文提出了一种基于大语言模型(LLMs)的生成式DDI三元提取框架。我们综合运用各种训练方法,如上下文学习、指令调优和任务调优,来研究GPT - 3、OPT和LLaMA的生物医学信息提取能力。我们还引入了低秩自适应(LoRA)技术,以显着减少可训练参数。该方法在DDI三元组抽取中取得了满意的结果,在相似语料上表现出较强的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generative Drug–Drug Interaction Triplets Extraction Framework Based on Large Language Models
ABSTRACT Drug–Drug Interaction (DDI) may affect the activity and efficacy of drugs, potentially leading to diminished therapeutic effect or even serious side effects. Therefore, automatic recognition of drug entities and relations involved in DDI is of great significance for pharmaceutical and medical care. In this paper, we propose a generative DDI triplets extraction framework based on Large Language Models (LLMs). We comprehensively apply various training methods, such as In‐context learning, Instruction‐tuning, and Task‐tuning, to investigate the biomedical information extraction capabilities of GPT‐3, OPT, and LLaMA. We also introduce Low‐Rank Adaptation (LoRA) technology to significantly reduce trainable parameters. The proposed method achieves satisfactory results in DDI triplet extraction, and demonstrates strong generalization ability on similar corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Association for Information Science and Technology
Proceedings of the Association for Information Science and Technology Social Sciences-Library and Information Sciences
CiteScore
1.30
自引率
0.00%
发文量
164
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信