有限整数区间有限集理论的一个决策过程

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Maximiliano Cristiá, Gianfranco Rossi
{"title":"有限整数区间有限集理论的一个决策过程","authors":"Maximiliano Cristiá, Gianfranco Rossi","doi":"10.1145/3625230","DOIUrl":null,"url":null,"abstract":"In this paper we extend a decision procedure for the Boolean algebra of finite sets with cardinality constraints ( \\({\\mathcal {L}_{\\vert {\\cdot }\\vert }} \\) ) to a decision procedure for \\({\\mathcal {L}_{\\vert {\\cdot }\\vert }} \\) extended with set terms denoting finite integer intervals ( \\({\\mathcal {L}_{[\\,]}} \\) ). In \\({\\mathcal {L}_{[\\,]}} \\) interval limits can be integer linear terms including unbounded variables . These intervals are a useful extension because they allow to express non-trivial set operators such as the minimum and maximum of a set, still in a quantifier-free logic. Hence, by providing a decision procedure for \\({\\mathcal {L}_{[\\,]}} \\) it is possible to automatically reason about a new class of quantifier-free formulas. The decision procedure is implemented as part of the { log } (‘setlog’) tool. The paper includes a case study based on the elevator algorithm showing that { log } can automatically discharge all its invariance lemmas some of which involve intervals.","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":"38 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Decision Procedure for a Theory of Finite Sets with Finite Integer Intervals\",\"authors\":\"Maximiliano Cristiá, Gianfranco Rossi\",\"doi\":\"10.1145/3625230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extend a decision procedure for the Boolean algebra of finite sets with cardinality constraints ( \\\\({\\\\mathcal {L}_{\\\\vert {\\\\cdot }\\\\vert }} \\\\) ) to a decision procedure for \\\\({\\\\mathcal {L}_{\\\\vert {\\\\cdot }\\\\vert }} \\\\) extended with set terms denoting finite integer intervals ( \\\\({\\\\mathcal {L}_{[\\\\,]}} \\\\) ). In \\\\({\\\\mathcal {L}_{[\\\\,]}} \\\\) interval limits can be integer linear terms including unbounded variables . These intervals are a useful extension because they allow to express non-trivial set operators such as the minimum and maximum of a set, still in a quantifier-free logic. Hence, by providing a decision procedure for \\\\({\\\\mathcal {L}_{[\\\\,]}} \\\\) it is possible to automatically reason about a new class of quantifier-free formulas. The decision procedure is implemented as part of the { log } (‘setlog’) tool. The paper includes a case study based on the elevator algorithm showing that { log } can automatically discharge all its invariance lemmas some of which involve intervals.\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3625230\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3625230","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 5

摘要

本文推广了具有基数约束的有限集布尔代数的一个决策过程( \({\mathcal {L}_{\vert {\cdot }\vert }} \) )的决定程序 \({\mathcal {L}_{\vert {\cdot }\vert }} \) 用表示有限整数区间( \({\mathcal {L}_{[\,]}} \) ). 在 \({\mathcal {L}_{[\,]}} \) 区间极限可以是整数线性项,包括无界变量。这些区间是一个有用的扩展,因为它们允许在没有量词的逻辑中表示非平凡的集合算子,例如集合的最小值和最大值。因此,通过为…提供决策过程 \({\mathcal {L}_{[\,]}} \) 自动推理一类新的无量词公式是可能的。的一部分来实现决策过程 { 日志 } (' setlog ')工具。本文包括一个基于电梯算法的案例研究 { 日志 } 能自动解除其所有不变性引理,其中一些引理涉及区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Decision Procedure for a Theory of Finite Sets with Finite Integer Intervals
In this paper we extend a decision procedure for the Boolean algebra of finite sets with cardinality constraints ( \({\mathcal {L}_{\vert {\cdot }\vert }} \) ) to a decision procedure for \({\mathcal {L}_{\vert {\cdot }\vert }} \) extended with set terms denoting finite integer intervals ( \({\mathcal {L}_{[\,]}} \) ). In \({\mathcal {L}_{[\,]}} \) interval limits can be integer linear terms including unbounded variables . These intervals are a useful extension because they allow to express non-trivial set operators such as the minimum and maximum of a set, still in a quantifier-free logic. Hence, by providing a decision procedure for \({\mathcal {L}_{[\,]}} \) it is possible to automatically reason about a new class of quantifier-free formulas. The decision procedure is implemented as part of the { log } (‘setlog’) tool. The paper includes a case study based on the elevator algorithm showing that { log } can automatically discharge all its invariance lemmas some of which involve intervals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computational Logic
ACM Transactions on Computational Logic 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI). Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages. The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field. Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信