奇异吸引核的平均场极限和定量估计

IF 2.3 1区 数学 Q1 MATHEMATICS
Didier Bresch, Pierre-Emmanuel Jabin, Zhenfu Wang
{"title":"奇异吸引核的平均场极限和定量估计","authors":"Didier Bresch, Pierre-Emmanuel Jabin, Zhenfu Wang","doi":"10.1215/00127094-2022-0088","DOIUrl":null,"url":null,"abstract":"This paper proves the mean field limit and quantitative estimates for many-particle systems with singular attractive interactions between particles. As an important example, a full rigorous derivation (with quantitative estimates) of the Patlak-Keller-Segel model in optimal subcritical regimes is obtained for the first time. To give an answer to this longstanding problem, we take advantage of a new modulated free energy and we prove some precise large deviation estimates encoding the competition between diffusion and attraction. Combined with the range of repulsive kernels, already treated in the s{\\'e}minaire Laurent Schwartz proceeding [https://slsedp.centre-mersenne.org/journals/SLSEDP/ ], we provide the full proof of results announced by the authors in [C. R. Acad. Sciences Section Maths (2019)].","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Mean field limit and quantitative estimates with singular attractive kernels\",\"authors\":\"Didier Bresch, Pierre-Emmanuel Jabin, Zhenfu Wang\",\"doi\":\"10.1215/00127094-2022-0088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proves the mean field limit and quantitative estimates for many-particle systems with singular attractive interactions between particles. As an important example, a full rigorous derivation (with quantitative estimates) of the Patlak-Keller-Segel model in optimal subcritical regimes is obtained for the first time. To give an answer to this longstanding problem, we take advantage of a new modulated free energy and we prove some precise large deviation estimates encoding the competition between diffusion and attraction. Combined with the range of repulsive kernels, already treated in the s{\\\\'e}minaire Laurent Schwartz proceeding [https://slsedp.centre-mersenne.org/journals/SLSEDP/ ], we provide the full proof of results announced by the authors in [C. R. Acad. Sciences Section Maths (2019)].\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0088\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0088","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 31

摘要

本文证明了具有奇异吸引相互作用的多粒子系统的平均场极限和定量估计。作为一个重要的例子,首次获得了最优亚临界状态下patak - keller - segel模型的完整严格推导(含定量估计)。为了回答这个长期存在的问题,我们利用一种新的调制自由能,证明了一些精确的大偏差估计,编码了扩散和吸引之间的竞争。结合已经在s{\'e}minaire Laurent Schwartz程序[https://slsedp.centre-mersenne.org/journals/SLSEDP/]中处理的排斥核的范围,我们提供了作者在[C]中宣布的结果的完整证明。R. Acad.科学部分数学[2019]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean field limit and quantitative estimates with singular attractive kernels
This paper proves the mean field limit and quantitative estimates for many-particle systems with singular attractive interactions between particles. As an important example, a full rigorous derivation (with quantitative estimates) of the Patlak-Keller-Segel model in optimal subcritical regimes is obtained for the first time. To give an answer to this longstanding problem, we take advantage of a new modulated free energy and we prove some precise large deviation estimates encoding the competition between diffusion and attraction. Combined with the range of repulsive kernels, already treated in the s{\'e}minaire Laurent Schwartz proceeding [https://slsedp.centre-mersenne.org/journals/SLSEDP/ ], we provide the full proof of results announced by the authors in [C. R. Acad. Sciences Section Maths (2019)].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信