{"title":"可再生能源渗透率高的市场中的财务风险和资源充足性","authors":"Jacob Mays;Jesse D. Jenkins","doi":"10.1109/TEMPR.2023.3322531","DOIUrl":null,"url":null,"abstract":"This article considers the evolution of electricity market design as systems shift toward carbon-free technologies. Growth in wind and solar generation is likely to lead to increased price volatility on diurnal and seasonal timescales. In the standard risk-neutral optimization framework, volatility does not pose any theoretical issues for market design. Because revenue volatility has the potential to lead to a higher cost of capital for investments in competitive markets, however, many observers have questioned the viability of competitive models for resource adequacy as wind and solar grow in importance. To assess the role of risk management in overall market performance, we construct a stochastic equilibrium model incorporating financial entities as hedge providers for investors in generation capacity. Unlike in the standard optimization framework, the cost of capital in the equilibrium framework is endogenously determined by interannual revenue volatility and the risk measures used by market participants. Surprisingly, exploratory numerical tests suggest that overall investment risk may be lower in systems dominated by variable renewables due to reduced exposure to fuel price uncertainty. However, changes in investment risk are not uniform across resource types, and increased risk for peaking and backup resources contributes to lower reliability in the modeled future systems.","PeriodicalId":100639,"journal":{"name":"IEEE Transactions on Energy Markets, Policy and Regulation","volume":"1 4","pages":"523-535"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Financial Risk and Resource Adequacy in Markets With High Renewable Penetration\",\"authors\":\"Jacob Mays;Jesse D. Jenkins\",\"doi\":\"10.1109/TEMPR.2023.3322531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article considers the evolution of electricity market design as systems shift toward carbon-free technologies. Growth in wind and solar generation is likely to lead to increased price volatility on diurnal and seasonal timescales. In the standard risk-neutral optimization framework, volatility does not pose any theoretical issues for market design. Because revenue volatility has the potential to lead to a higher cost of capital for investments in competitive markets, however, many observers have questioned the viability of competitive models for resource adequacy as wind and solar grow in importance. To assess the role of risk management in overall market performance, we construct a stochastic equilibrium model incorporating financial entities as hedge providers for investors in generation capacity. Unlike in the standard optimization framework, the cost of capital in the equilibrium framework is endogenously determined by interannual revenue volatility and the risk measures used by market participants. Surprisingly, exploratory numerical tests suggest that overall investment risk may be lower in systems dominated by variable renewables due to reduced exposure to fuel price uncertainty. However, changes in investment risk are not uniform across resource types, and increased risk for peaking and backup resources contributes to lower reliability in the modeled future systems.\",\"PeriodicalId\":100639,\"journal\":{\"name\":\"IEEE Transactions on Energy Markets, Policy and Regulation\",\"volume\":\"1 4\",\"pages\":\"523-535\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Energy Markets, Policy and Regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10273857/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Energy Markets, Policy and Regulation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10273857/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Financial Risk and Resource Adequacy in Markets With High Renewable Penetration
This article considers the evolution of electricity market design as systems shift toward carbon-free technologies. Growth in wind and solar generation is likely to lead to increased price volatility on diurnal and seasonal timescales. In the standard risk-neutral optimization framework, volatility does not pose any theoretical issues for market design. Because revenue volatility has the potential to lead to a higher cost of capital for investments in competitive markets, however, many observers have questioned the viability of competitive models for resource adequacy as wind and solar grow in importance. To assess the role of risk management in overall market performance, we construct a stochastic equilibrium model incorporating financial entities as hedge providers for investors in generation capacity. Unlike in the standard optimization framework, the cost of capital in the equilibrium framework is endogenously determined by interannual revenue volatility and the risk measures used by market participants. Surprisingly, exploratory numerical tests suggest that overall investment risk may be lower in systems dominated by variable renewables due to reduced exposure to fuel price uncertainty. However, changes in investment risk are not uniform across resource types, and increased risk for peaking and backup resources contributes to lower reliability in the modeled future systems.