{"title":"Cattaneo-Christov热通量对Jeffrey流体中sakadiis MHD边界层输运现象的影响","authors":"Zarith Othman, Zailan Siri, Muhamad Aziz, Kohilavani Naganthran","doi":"10.2298/tsci221013214o","DOIUrl":null,"url":null,"abstract":"This study aims to perform a numerical simulation of the boundary flow with the characteristic Sakiadis flow of the magnetohydrodynamic (MHD) Jeffrey fluid under the Cattaneo-Christov heat flux model over the horizontal plate. The similarity transformation for the local similarity solution was used to reduce the set of governing equations to non-linear ordinary differential equations. The equations were solved by using ?dsolve? command with the numeric option for the boundary value problem in Maple. Simulations have been carried out for different values of the relaxation to retardation times, the Deborah number, the magnetic field parameter, the heat flux relaxation time, the Prandtl number, and the Schmidt parameter. A comparative study of the numerical results from the previously published paper with the present result for the dimensionless velocity gradient over the horizontal plate shows excellent agreement. It has been found that the growth of the Deborah number leads to the dimensionless velocity gradient enhancement, while the increment of the relaxation to retardation times parameter and the magnetic field parameter indicates the opposite trend. The heat transfer rate noticeably decreased with an increment in the Prandtl number and thermal relaxation time at the fluid regime. Also, fluid concentration decreases with larger values of the Schmidt parameter.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cattaneo-Christov heat flux effect on Sakiadis MHD boundary layer transport phenomena in the Jeffrey fluid\",\"authors\":\"Zarith Othman, Zailan Siri, Muhamad Aziz, Kohilavani Naganthran\",\"doi\":\"10.2298/tsci221013214o\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to perform a numerical simulation of the boundary flow with the characteristic Sakiadis flow of the magnetohydrodynamic (MHD) Jeffrey fluid under the Cattaneo-Christov heat flux model over the horizontal plate. The similarity transformation for the local similarity solution was used to reduce the set of governing equations to non-linear ordinary differential equations. The equations were solved by using ?dsolve? command with the numeric option for the boundary value problem in Maple. Simulations have been carried out for different values of the relaxation to retardation times, the Deborah number, the magnetic field parameter, the heat flux relaxation time, the Prandtl number, and the Schmidt parameter. A comparative study of the numerical results from the previously published paper with the present result for the dimensionless velocity gradient over the horizontal plate shows excellent agreement. It has been found that the growth of the Deborah number leads to the dimensionless velocity gradient enhancement, while the increment of the relaxation to retardation times parameter and the magnetic field parameter indicates the opposite trend. The heat transfer rate noticeably decreased with an increment in the Prandtl number and thermal relaxation time at the fluid regime. Also, fluid concentration decreases with larger values of the Schmidt parameter.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tsci221013214o\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tsci221013214o","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cattaneo-Christov heat flux effect on Sakiadis MHD boundary layer transport phenomena in the Jeffrey fluid
This study aims to perform a numerical simulation of the boundary flow with the characteristic Sakiadis flow of the magnetohydrodynamic (MHD) Jeffrey fluid under the Cattaneo-Christov heat flux model over the horizontal plate. The similarity transformation for the local similarity solution was used to reduce the set of governing equations to non-linear ordinary differential equations. The equations were solved by using ?dsolve? command with the numeric option for the boundary value problem in Maple. Simulations have been carried out for different values of the relaxation to retardation times, the Deborah number, the magnetic field parameter, the heat flux relaxation time, the Prandtl number, and the Schmidt parameter. A comparative study of the numerical results from the previously published paper with the present result for the dimensionless velocity gradient over the horizontal plate shows excellent agreement. It has been found that the growth of the Deborah number leads to the dimensionless velocity gradient enhancement, while the increment of the relaxation to retardation times parameter and the magnetic field parameter indicates the opposite trend. The heat transfer rate noticeably decreased with an increment in the Prandtl number and thermal relaxation time at the fluid regime. Also, fluid concentration decreases with larger values of the Schmidt parameter.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.