基于非线性有限元法的高频焊接三维温度场模拟

IF 2.4 Q2 ENGINEERING, MECHANICAL
Lun Tang, Minge Yang, Zhihua Hou
{"title":"基于非线性有限元法的高频焊接三维温度场模拟","authors":"Lun Tang, Minge Yang, Zhihua Hou","doi":"10.1515/nleng-2022-0316","DOIUrl":null,"url":null,"abstract":"Abstract In modern industrial production, many advanced manufacturing technologies are constantly developing with the progress of social sciences. Welding, as an indispensable manufacturing technology in industrial production, has received close attention from various industries. High frequency welding technology is needed in fields such as mechanical manufacturing, machine making in the food industry, and intelligent robot model making. High frequency welding is an important technical means in the production process of welded pipes, and the level of welding temperature has a significant impact on the quality of welded pipe welds. This article studied the shortcomings of traditional high-frequency welding, analyzed the application method of nonlinear finite element method in high-frequency welding, and analyzed the dynamic process of welding and its influencing factors. The finite element method formula is used to stabilize the value of three-dimensional (3D) temperature field. This work studied the temperature distribution of welded pipe welding, welded pipe materials, inside and outside of welded pipe, and temperature changes under different voltages. The experimental results showed that the error value between the simulation results of the 3D temperature field of high-frequency welding and the measured experimental results was about 4.3542°C, which was basically similar, indicating the effectiveness of the 3D temperature field simulation experiment. With the development of science and technology, high-frequency welding technology would continue to improve, and the quality of welded pipe welds would become better and better with the progress of technology. The improvement in quality promotes the development and progress of industry, and maintains the quality of machine manufacturing. The simulation experiment method of 3D temperature field has shortened the experimental time and reduced the experimental cost, providing a new reference for other temperature related experiments.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":"120 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of three-dimensional temperature field in high-frequency welding based on nonlinear finite element method\",\"authors\":\"Lun Tang, Minge Yang, Zhihua Hou\",\"doi\":\"10.1515/nleng-2022-0316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In modern industrial production, many advanced manufacturing technologies are constantly developing with the progress of social sciences. Welding, as an indispensable manufacturing technology in industrial production, has received close attention from various industries. High frequency welding technology is needed in fields such as mechanical manufacturing, machine making in the food industry, and intelligent robot model making. High frequency welding is an important technical means in the production process of welded pipes, and the level of welding temperature has a significant impact on the quality of welded pipe welds. This article studied the shortcomings of traditional high-frequency welding, analyzed the application method of nonlinear finite element method in high-frequency welding, and analyzed the dynamic process of welding and its influencing factors. The finite element method formula is used to stabilize the value of three-dimensional (3D) temperature field. This work studied the temperature distribution of welded pipe welding, welded pipe materials, inside and outside of welded pipe, and temperature changes under different voltages. The experimental results showed that the error value between the simulation results of the 3D temperature field of high-frequency welding and the measured experimental results was about 4.3542°C, which was basically similar, indicating the effectiveness of the 3D temperature field simulation experiment. With the development of science and technology, high-frequency welding technology would continue to improve, and the quality of welded pipe welds would become better and better with the progress of technology. The improvement in quality promotes the development and progress of industry, and maintains the quality of machine manufacturing. The simulation experiment method of 3D temperature field has shortened the experimental time and reduced the experimental cost, providing a new reference for other temperature related experiments.\",\"PeriodicalId\":37863,\"journal\":{\"name\":\"Nonlinear Engineering - Modeling and Application\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Engineering - Modeling and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/nleng-2022-0316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在现代工业生产中,随着社会科学的进步,许多先进的制造技术也在不断发展。焊接作为工业生产中不可缺少的制造技术,受到各行业的密切关注。机械制造、食品工业机械制造、智能机器人模型制作等领域都需要高频焊接技术。高频焊接是焊管生产过程中的重要技术手段,焊接温度的高低对焊管焊缝质量有重大影响。本文研究了传统高频焊接的缺点,分析了非线性有限元法在高频焊接中的应用方法,分析了焊接的动态过程及其影响因素。采用有限元法公式稳定三维温度场的数值。本工作研究了焊管焊接、焊管材料、焊管内外的温度分布,以及不同电压下的温度变化。实验结果表明,高频焊接三维温度场模拟结果与实测实验结果误差值约为4.3542℃,两者基本相似,表明了三维温度场模拟实验的有效性。随着科学技术的发展,高频焊接技术会不断提高,焊管焊缝的质量也会随着技术的进步而越来越好。质量的提高促进了工业的发展和进步,保持了机械制造的质量。三维温度场模拟实验方法缩短了实验时间,降低了实验成本,为其他温度相关实验提供了新的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of three-dimensional temperature field in high-frequency welding based on nonlinear finite element method
Abstract In modern industrial production, many advanced manufacturing technologies are constantly developing with the progress of social sciences. Welding, as an indispensable manufacturing technology in industrial production, has received close attention from various industries. High frequency welding technology is needed in fields such as mechanical manufacturing, machine making in the food industry, and intelligent robot model making. High frequency welding is an important technical means in the production process of welded pipes, and the level of welding temperature has a significant impact on the quality of welded pipe welds. This article studied the shortcomings of traditional high-frequency welding, analyzed the application method of nonlinear finite element method in high-frequency welding, and analyzed the dynamic process of welding and its influencing factors. The finite element method formula is used to stabilize the value of three-dimensional (3D) temperature field. This work studied the temperature distribution of welded pipe welding, welded pipe materials, inside and outside of welded pipe, and temperature changes under different voltages. The experimental results showed that the error value between the simulation results of the 3D temperature field of high-frequency welding and the measured experimental results was about 4.3542°C, which was basically similar, indicating the effectiveness of the 3D temperature field simulation experiment. With the development of science and technology, high-frequency welding technology would continue to improve, and the quality of welded pipe welds would become better and better with the progress of technology. The improvement in quality promotes the development and progress of industry, and maintains the quality of machine manufacturing. The simulation experiment method of 3D temperature field has shortened the experimental time and reduced the experimental cost, providing a new reference for other temperature related experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
3.60%
发文量
49
审稿时长
44 weeks
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信