硫酸稳定处理主凝汽器冷却回路的技术与环境问题

IF 0.6
Pavlo Kuznietsov, Olha Biedunkova
{"title":"硫酸稳定处理主凝汽器冷却回路的技术与环境问题","authors":"Pavlo Kuznietsov, Olha Biedunkova","doi":"10.21272/jes.2023.10(2).h1","DOIUrl":null,"url":null,"abstract":"The method of anti-scale stabilization treatment of cooling water of the circulating cooling system (CCS) with sulphuric acid to reduce the content of bicarbonate and carbonate ions allows to effectively reduce scale formation processes in power plant’s cooling systems. The results of the research and analysis of the sulphuric acid dosage to ensure the water-chemical regime of the reversible cooling system are presented in the example of the Rivne NPP. The analysis of the results of the control of the technology of stabilization treatment of cooling water with sulphuric acid was carried out, as the influence of the technological changes on the content of sulfate ions in the discharge water and the influence of the water discharge into a water body were evaluated. The sulphuric acid stabilization treatment makes it possible to neutralize the alkalinity caused by the content of bicarbonate and carbonate ions and to convert the proportion of calcium ions bound to bicarbonate and carbonate ions into a permanent hardness that is not prone to scale formation under the influence of temperature and has a lower tendency to scale formation. The use of sulphuric acid may be suitable for the optimal choice of water chemistry regime for scale reduction in CCS, according to the criteria of acidification of additional cooling water, which is the dosing criterion. The technological regimes for CCS stabilization treatment with sulphuric acid introduced at the Rivne Nuclear Power Plant (NPP) ensured a decrease in the use of sulphuric acid and a decrease in discharges into the water body by an average of 220 t/year, a decrease in the increase in the content of sulfate ions before the water intake and after the water discharge of the Rivne NPP, which correlates with a decrease in the amount of sulphuric acid used for CCS water treatment and a decrease in the environmental impact on the water bodies of the Styr River.","PeriodicalId":31548,"journal":{"name":"Zhurnal inzhenernikh nauk","volume":"44 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Technological and Environmental Problems in the Stabilization Treatment of the Main Condenser Cooling Circuit by Sulfuric Acid\",\"authors\":\"Pavlo Kuznietsov, Olha Biedunkova\",\"doi\":\"10.21272/jes.2023.10(2).h1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method of anti-scale stabilization treatment of cooling water of the circulating cooling system (CCS) with sulphuric acid to reduce the content of bicarbonate and carbonate ions allows to effectively reduce scale formation processes in power plant’s cooling systems. The results of the research and analysis of the sulphuric acid dosage to ensure the water-chemical regime of the reversible cooling system are presented in the example of the Rivne NPP. The analysis of the results of the control of the technology of stabilization treatment of cooling water with sulphuric acid was carried out, as the influence of the technological changes on the content of sulfate ions in the discharge water and the influence of the water discharge into a water body were evaluated. The sulphuric acid stabilization treatment makes it possible to neutralize the alkalinity caused by the content of bicarbonate and carbonate ions and to convert the proportion of calcium ions bound to bicarbonate and carbonate ions into a permanent hardness that is not prone to scale formation under the influence of temperature and has a lower tendency to scale formation. The use of sulphuric acid may be suitable for the optimal choice of water chemistry regime for scale reduction in CCS, according to the criteria of acidification of additional cooling water, which is the dosing criterion. The technological regimes for CCS stabilization treatment with sulphuric acid introduced at the Rivne Nuclear Power Plant (NPP) ensured a decrease in the use of sulphuric acid and a decrease in discharges into the water body by an average of 220 t/year, a decrease in the increase in the content of sulfate ions before the water intake and after the water discharge of the Rivne NPP, which correlates with a decrease in the amount of sulphuric acid used for CCS water treatment and a decrease in the environmental impact on the water bodies of the Styr River.\",\"PeriodicalId\":31548,\"journal\":{\"name\":\"Zhurnal inzhenernikh nauk\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal inzhenernikh nauk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/jes.2023.10(2).h1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal inzhenernikh nauk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jes.2023.10(2).h1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用硫酸对循环冷却系统冷却水进行防垢稳定处理,降低碳酸氢盐和碳酸盐离子的含量,可以有效地减少电厂冷却系统中的结垢过程。本文以Rivne核电站为例,对保证可逆冷却系统水化学状态的硫酸用量进行了研究和分析。对冷却水硫酸稳定化处理工艺控制结果进行了分析,评价了工艺变化对排放水中硫酸盐离子含量的影响以及对水体排放的影响。硫酸稳定化处理可以中和碳酸氢盐和碳酸盐离子含量引起的碱性,并将钙离子与碳酸氢盐和碳酸盐离子结合的比例转化为在温度影响下不易结垢、结垢倾向较低的永久硬度。根据附加冷却水的酸化标准(即加药标准),硫酸的使用可能适合于CCS中减垢水化学制度的最佳选择。在Rivne核电站(NPP)引入的用硫酸进行CCS稳定处理的技术制度确保了硫酸的使用减少,并减少了平均220吨/年的水体排放量,减少了Rivne核电站进水前和排水后硫酸盐离子含量的增加。这与减少用于CCS水处理的硫酸量以及减少对斯泰尔河水体的环境影响有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technological and Environmental Problems in the Stabilization Treatment of the Main Condenser Cooling Circuit by Sulfuric Acid
The method of anti-scale stabilization treatment of cooling water of the circulating cooling system (CCS) with sulphuric acid to reduce the content of bicarbonate and carbonate ions allows to effectively reduce scale formation processes in power plant’s cooling systems. The results of the research and analysis of the sulphuric acid dosage to ensure the water-chemical regime of the reversible cooling system are presented in the example of the Rivne NPP. The analysis of the results of the control of the technology of stabilization treatment of cooling water with sulphuric acid was carried out, as the influence of the technological changes on the content of sulfate ions in the discharge water and the influence of the water discharge into a water body were evaluated. The sulphuric acid stabilization treatment makes it possible to neutralize the alkalinity caused by the content of bicarbonate and carbonate ions and to convert the proportion of calcium ions bound to bicarbonate and carbonate ions into a permanent hardness that is not prone to scale formation under the influence of temperature and has a lower tendency to scale formation. The use of sulphuric acid may be suitable for the optimal choice of water chemistry regime for scale reduction in CCS, according to the criteria of acidification of additional cooling water, which is the dosing criterion. The technological regimes for CCS stabilization treatment with sulphuric acid introduced at the Rivne Nuclear Power Plant (NPP) ensured a decrease in the use of sulphuric acid and a decrease in discharges into the water body by an average of 220 t/year, a decrease in the increase in the content of sulfate ions before the water intake and after the water discharge of the Rivne NPP, which correlates with a decrease in the amount of sulphuric acid used for CCS water treatment and a decrease in the environmental impact on the water bodies of the Styr River.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
15
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信