沼气产量预测的机器学习算法分析

V Lysenko, T Lendyel, S Pavlov
{"title":"沼气产量预测的机器学习算法分析","authors":"V Lysenko, T Lendyel, S Pavlov","doi":"10.31548/energiya3(67).2023.100","DOIUrl":null,"url":null,"abstract":"Currently, effective management of biogas production remains a difficult task. The purpose of the research is to analyze machine learning algorithms for predicting biogas output depending on the characteristics of biogas production. Currently, there is no necessary set of data, analyzing which indicators can be obtained to optimize biogas production in our installation. At the same time, testing various optimization algorithms and deciding on the best takes a lot of time, as experience shows. The application of machine algorithms for forecasting biogas production by using existing forecasting methods is considered. Provided that the control systems of typical biogas productions are equipped with the necessary sensing elements, there still remains the task of processing and analyzing data to make the best decision to meet the relevant technological requirements. The reason for this is the large volume of data and the complexity of the interaction of processes that are components of production. In this context, machine learning can be a useful tool for optimizing biogas production.","PeriodicalId":499839,"journal":{"name":"Енергетика і автоматика","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BIOGAS YIELD PREDICTION\",\"authors\":\"V Lysenko, T Lendyel, S Pavlov\",\"doi\":\"10.31548/energiya3(67).2023.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, effective management of biogas production remains a difficult task. The purpose of the research is to analyze machine learning algorithms for predicting biogas output depending on the characteristics of biogas production. Currently, there is no necessary set of data, analyzing which indicators can be obtained to optimize biogas production in our installation. At the same time, testing various optimization algorithms and deciding on the best takes a lot of time, as experience shows. The application of machine algorithms for forecasting biogas production by using existing forecasting methods is considered. Provided that the control systems of typical biogas productions are equipped with the necessary sensing elements, there still remains the task of processing and analyzing data to make the best decision to meet the relevant technological requirements. The reason for this is the large volume of data and the complexity of the interaction of processes that are components of production. In this context, machine learning can be a useful tool for optimizing biogas production.\",\"PeriodicalId\":499839,\"journal\":{\"name\":\"Енергетика і автоматика\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Енергетика і автоматика\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31548/energiya3(67).2023.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Енергетика і автоматика","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31548/energiya3(67).2023.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,有效管理沼气生产仍然是一项艰巨的任务。该研究的目的是分析根据沼气生产特征预测沼气产量的机器学习算法。目前,没有必要的数据集,分析哪些指标可以得到优化沼气生产在我们的安装。同时,经验表明,测试各种优化算法并决定最佳算法需要花费大量时间。在现有预测方法的基础上,考虑了机器算法在沼气产量预测中的应用。在典型沼气生产控制系统配备了必要的传感元件的情况下,还需要对数据进行处理和分析,以做出符合相关工艺要求的最佳决策。造成这种情况的原因是大量的数据和作为生产组件的过程交互的复杂性。在这种情况下,机器学习可以成为优化沼气生产的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BIOGAS YIELD PREDICTION
Currently, effective management of biogas production remains a difficult task. The purpose of the research is to analyze machine learning algorithms for predicting biogas output depending on the characteristics of biogas production. Currently, there is no necessary set of data, analyzing which indicators can be obtained to optimize biogas production in our installation. At the same time, testing various optimization algorithms and deciding on the best takes a lot of time, as experience shows. The application of machine algorithms for forecasting biogas production by using existing forecasting methods is considered. Provided that the control systems of typical biogas productions are equipped with the necessary sensing elements, there still remains the task of processing and analyzing data to make the best decision to meet the relevant technological requirements. The reason for this is the large volume of data and the complexity of the interaction of processes that are components of production. In this context, machine learning can be a useful tool for optimizing biogas production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信