三种系统中收获产量最大化

Jacob Kahn
{"title":"三种系统中收获产量最大化","authors":"Jacob Kahn","doi":"10.1137/23s1546737","DOIUrl":null,"url":null,"abstract":"Management decisions on sustainable harvesting of any species in our marine ecosystems benefit from mathematical modeling and simulations due to the underlying complex ecological interactions between species. Using basic mathematical analysis and numerical simulation tools, we consider the problem of investigating the maximum sustainable yield (MSY) and the maximum economic yield (MEY) when harvesting in a fishery system consisting of one predator and two competing prey species. Results show that the harvesting effort required to achieve MEY is less than what is needed to achieve MSY. This implies that increasing harvesting effort beyond what is needed to reach MEY will not necessarily deliver more profits but may run the risk of driving some of the species of the system into extinction. Furthermore, results show that under the MEY management policy, a predator-oriented harvesting approach is recommended when harvesting single-species only. For double-species harvesting in a system with weak interspecific competition and weak predation, a prey-oriented harvesting approach is recommended, but when there is strong interspecific competition and strong predation, a predator-oriented harvesting approach is recommended.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing Harvest Yields in a Three-Species System\",\"authors\":\"Jacob Kahn\",\"doi\":\"10.1137/23s1546737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Management decisions on sustainable harvesting of any species in our marine ecosystems benefit from mathematical modeling and simulations due to the underlying complex ecological interactions between species. Using basic mathematical analysis and numerical simulation tools, we consider the problem of investigating the maximum sustainable yield (MSY) and the maximum economic yield (MEY) when harvesting in a fishery system consisting of one predator and two competing prey species. Results show that the harvesting effort required to achieve MEY is less than what is needed to achieve MSY. This implies that increasing harvesting effort beyond what is needed to reach MEY will not necessarily deliver more profits but may run the risk of driving some of the species of the system into extinction. Furthermore, results show that under the MEY management policy, a predator-oriented harvesting approach is recommended when harvesting single-species only. For double-species harvesting in a system with weak interspecific competition and weak predation, a prey-oriented harvesting approach is recommended, but when there is strong interspecific competition and strong predation, a predator-oriented harvesting approach is recommended.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/23s1546737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23s1546737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximizing Harvest Yields in a Three-Species System
Management decisions on sustainable harvesting of any species in our marine ecosystems benefit from mathematical modeling and simulations due to the underlying complex ecological interactions between species. Using basic mathematical analysis and numerical simulation tools, we consider the problem of investigating the maximum sustainable yield (MSY) and the maximum economic yield (MEY) when harvesting in a fishery system consisting of one predator and two competing prey species. Results show that the harvesting effort required to achieve MEY is less than what is needed to achieve MSY. This implies that increasing harvesting effort beyond what is needed to reach MEY will not necessarily deliver more profits but may run the risk of driving some of the species of the system into extinction. Furthermore, results show that under the MEY management policy, a predator-oriented harvesting approach is recommended when harvesting single-species only. For double-species harvesting in a system with weak interspecific competition and weak predation, a prey-oriented harvesting approach is recommended, but when there is strong interspecific competition and strong predation, a predator-oriented harvesting approach is recommended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信