{"title":"三种系统中收获产量最大化","authors":"Jacob Kahn","doi":"10.1137/23s1546737","DOIUrl":null,"url":null,"abstract":"Management decisions on sustainable harvesting of any species in our marine ecosystems benefit from mathematical modeling and simulations due to the underlying complex ecological interactions between species. Using basic mathematical analysis and numerical simulation tools, we consider the problem of investigating the maximum sustainable yield (MSY) and the maximum economic yield (MEY) when harvesting in a fishery system consisting of one predator and two competing prey species. Results show that the harvesting effort required to achieve MEY is less than what is needed to achieve MSY. This implies that increasing harvesting effort beyond what is needed to reach MEY will not necessarily deliver more profits but may run the risk of driving some of the species of the system into extinction. Furthermore, results show that under the MEY management policy, a predator-oriented harvesting approach is recommended when harvesting single-species only. For double-species harvesting in a system with weak interspecific competition and weak predation, a prey-oriented harvesting approach is recommended, but when there is strong interspecific competition and strong predation, a predator-oriented harvesting approach is recommended.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing Harvest Yields in a Three-Species System\",\"authors\":\"Jacob Kahn\",\"doi\":\"10.1137/23s1546737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Management decisions on sustainable harvesting of any species in our marine ecosystems benefit from mathematical modeling and simulations due to the underlying complex ecological interactions between species. Using basic mathematical analysis and numerical simulation tools, we consider the problem of investigating the maximum sustainable yield (MSY) and the maximum economic yield (MEY) when harvesting in a fishery system consisting of one predator and two competing prey species. Results show that the harvesting effort required to achieve MEY is less than what is needed to achieve MSY. This implies that increasing harvesting effort beyond what is needed to reach MEY will not necessarily deliver more profits but may run the risk of driving some of the species of the system into extinction. Furthermore, results show that under the MEY management policy, a predator-oriented harvesting approach is recommended when harvesting single-species only. For double-species harvesting in a system with weak interspecific competition and weak predation, a prey-oriented harvesting approach is recommended, but when there is strong interspecific competition and strong predation, a predator-oriented harvesting approach is recommended.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/23s1546737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23s1546737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximizing Harvest Yields in a Three-Species System
Management decisions on sustainable harvesting of any species in our marine ecosystems benefit from mathematical modeling and simulations due to the underlying complex ecological interactions between species. Using basic mathematical analysis and numerical simulation tools, we consider the problem of investigating the maximum sustainable yield (MSY) and the maximum economic yield (MEY) when harvesting in a fishery system consisting of one predator and two competing prey species. Results show that the harvesting effort required to achieve MEY is less than what is needed to achieve MSY. This implies that increasing harvesting effort beyond what is needed to reach MEY will not necessarily deliver more profits but may run the risk of driving some of the species of the system into extinction. Furthermore, results show that under the MEY management policy, a predator-oriented harvesting approach is recommended when harvesting single-species only. For double-species harvesting in a system with weak interspecific competition and weak predation, a prey-oriented harvesting approach is recommended, but when there is strong interspecific competition and strong predation, a predator-oriented harvesting approach is recommended.