{"title":"通过优化闭环供应链中的产品回收,提高自动化空调的可持续性和性能","authors":"Sivaraman Parthasarathi, Santhosh Srinivasan","doi":"10.2298/tsci220907221p","DOIUrl":null,"url":null,"abstract":"This article investigates the use of closed-loop supply chains (CLSC) to improve the sustainability and performance of automatic air conditioning systems. With the growing use of automated air conditioning systems in automobiles, it is necessary to analyze and optimize their efficiency even after their life span. To reliably anticipate the performance of automatic air conditioning systems, the suggested method employs a unique soft computing technology based on support vector machines (SVM). Furthermore, the research focuses on the deployment of CLSC, which allows for optimal product recovery and resource utilization. To optimize the multi-product, multi-time, multi-echelon network, a generalized CLSC model is built, considering costs, product recovery possibilities, unknown parameters, and environmental performance. The study sheds light on reverse logistics decision-making, such as centre placement and allocation, as well as cultivation of supplier relationships. Overall, this study's incorporation of CLSC and the SVM-based performance prediction approach supports sustainable manufacturing practices. It emphasizes the significance of resource efficiency, waste minimization, and environmental effect mitigation in air conditioning system design, manufacture, and operation. Manufacturers may increase not just their environmental sustainability but also the performance and durability of their air conditioning systems by optimizing product recovery and utilizing closed-loop supply chains. This study provides industry stakeholders with practical information, supporting the adoption of sustainable practices and contributing to a more sustainable and efficient manufacturing ecosystem.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":"26 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing sustainability and performance of automated air conditioners through optimizing product recovery in closed-loop supply chains\",\"authors\":\"Sivaraman Parthasarathi, Santhosh Srinivasan\",\"doi\":\"10.2298/tsci220907221p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the use of closed-loop supply chains (CLSC) to improve the sustainability and performance of automatic air conditioning systems. With the growing use of automated air conditioning systems in automobiles, it is necessary to analyze and optimize their efficiency even after their life span. To reliably anticipate the performance of automatic air conditioning systems, the suggested method employs a unique soft computing technology based on support vector machines (SVM). Furthermore, the research focuses on the deployment of CLSC, which allows for optimal product recovery and resource utilization. To optimize the multi-product, multi-time, multi-echelon network, a generalized CLSC model is built, considering costs, product recovery possibilities, unknown parameters, and environmental performance. The study sheds light on reverse logistics decision-making, such as centre placement and allocation, as well as cultivation of supplier relationships. Overall, this study's incorporation of CLSC and the SVM-based performance prediction approach supports sustainable manufacturing practices. It emphasizes the significance of resource efficiency, waste minimization, and environmental effect mitigation in air conditioning system design, manufacture, and operation. Manufacturers may increase not just their environmental sustainability but also the performance and durability of their air conditioning systems by optimizing product recovery and utilizing closed-loop supply chains. This study provides industry stakeholders with practical information, supporting the adoption of sustainable practices and contributing to a more sustainable and efficient manufacturing ecosystem.\",\"PeriodicalId\":23125,\"journal\":{\"name\":\"Thermal Science\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tsci220907221p\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tsci220907221p","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Enhancing sustainability and performance of automated air conditioners through optimizing product recovery in closed-loop supply chains
This article investigates the use of closed-loop supply chains (CLSC) to improve the sustainability and performance of automatic air conditioning systems. With the growing use of automated air conditioning systems in automobiles, it is necessary to analyze and optimize their efficiency even after their life span. To reliably anticipate the performance of automatic air conditioning systems, the suggested method employs a unique soft computing technology based on support vector machines (SVM). Furthermore, the research focuses on the deployment of CLSC, which allows for optimal product recovery and resource utilization. To optimize the multi-product, multi-time, multi-echelon network, a generalized CLSC model is built, considering costs, product recovery possibilities, unknown parameters, and environmental performance. The study sheds light on reverse logistics decision-making, such as centre placement and allocation, as well as cultivation of supplier relationships. Overall, this study's incorporation of CLSC and the SVM-based performance prediction approach supports sustainable manufacturing practices. It emphasizes the significance of resource efficiency, waste minimization, and environmental effect mitigation in air conditioning system design, manufacture, and operation. Manufacturers may increase not just their environmental sustainability but also the performance and durability of their air conditioning systems by optimizing product recovery and utilizing closed-loop supply chains. This study provides industry stakeholders with practical information, supporting the adoption of sustainable practices and contributing to a more sustainable and efficient manufacturing ecosystem.
期刊介绍:
The main aims of Thermal Science
to publish papers giving results of the fundamental and applied research in different, but closely connected fields:
fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes
in single, and specifically in multi-phase and multi-component flows
in high-temperature chemically reacting flows
processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering,
The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.