Fauzi Adi Rafrastara, Catur Supriyanto, Cinantya Paramita, Yani Parti Astuti
{"title":"使用基于套装的组装方法检测恶意软件","authors":"Fauzi Adi Rafrastara, Catur Supriyanto, Cinantya Paramita, Yani Parti Astuti","doi":"10.30591/jpit.v8i1.4606","DOIUrl":null,"url":null,"abstract":"Serangan malware kian hari kian memprihatinkan. Evolusi malware yang cepat dan semakin destruktif menimbulkan kekhawatiran bagi banyak pihak. Oleh karena itu, deteksi malware yang efektif sangat dibutuhkan. Data mining memainkan peran yang krusial dalam bidang ini, mengingat algoritma-algoritma yang ada pada data mining bisa dilatih hingga menghasilkan akurasi yang paling tinggi. Untuk mengklasifikasi suatu file, apakah tergolong malware atau tidak, dalam penelitian ini metode stacking digunakan karena dapat meningkatkan akurasi jika dibandingkan dengan algoritma-algoritma klasifikasi konvensional. Empat Algoritma dilibatkan dalam eksperimen yang dilakukan, yaitu: Neural Network, Random Forest, kNN, dan Logistic Regression. Tiga algoritma pertama digunakan sebagai classifier pada level 0, sementara itu Logistic Regression digunakan classifier pada level 1 (meta classifier). Dengan kombinasi 4 algoritma tersebut, akurasi yang diperoleh adalah sebesar 98.7%, dan akurasi tersebut merupakan yang paling tinggi jika dibandingkan dengan masing-masing algoritma jika dieksekusi secara individual.","PeriodicalId":53375,"journal":{"name":"Jurnal Informatika Jurnal Pengembangan IT","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deteksi Malware menggunakan Metode Stacking berbasis Ensemble\",\"authors\":\"Fauzi Adi Rafrastara, Catur Supriyanto, Cinantya Paramita, Yani Parti Astuti\",\"doi\":\"10.30591/jpit.v8i1.4606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serangan malware kian hari kian memprihatinkan. Evolusi malware yang cepat dan semakin destruktif menimbulkan kekhawatiran bagi banyak pihak. Oleh karena itu, deteksi malware yang efektif sangat dibutuhkan. Data mining memainkan peran yang krusial dalam bidang ini, mengingat algoritma-algoritma yang ada pada data mining bisa dilatih hingga menghasilkan akurasi yang paling tinggi. Untuk mengklasifikasi suatu file, apakah tergolong malware atau tidak, dalam penelitian ini metode stacking digunakan karena dapat meningkatkan akurasi jika dibandingkan dengan algoritma-algoritma klasifikasi konvensional. Empat Algoritma dilibatkan dalam eksperimen yang dilakukan, yaitu: Neural Network, Random Forest, kNN, dan Logistic Regression. Tiga algoritma pertama digunakan sebagai classifier pada level 0, sementara itu Logistic Regression digunakan classifier pada level 1 (meta classifier). Dengan kombinasi 4 algoritma tersebut, akurasi yang diperoleh adalah sebesar 98.7%, dan akurasi tersebut merupakan yang paling tinggi jika dibandingkan dengan masing-masing algoritma jika dieksekusi secara individual.\",\"PeriodicalId\":53375,\"journal\":{\"name\":\"Jurnal Informatika Jurnal Pengembangan IT\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Informatika Jurnal Pengembangan IT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30591/jpit.v8i1.4606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/jpit.v8i1.4606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deteksi Malware menggunakan Metode Stacking berbasis Ensemble
Serangan malware kian hari kian memprihatinkan. Evolusi malware yang cepat dan semakin destruktif menimbulkan kekhawatiran bagi banyak pihak. Oleh karena itu, deteksi malware yang efektif sangat dibutuhkan. Data mining memainkan peran yang krusial dalam bidang ini, mengingat algoritma-algoritma yang ada pada data mining bisa dilatih hingga menghasilkan akurasi yang paling tinggi. Untuk mengklasifikasi suatu file, apakah tergolong malware atau tidak, dalam penelitian ini metode stacking digunakan karena dapat meningkatkan akurasi jika dibandingkan dengan algoritma-algoritma klasifikasi konvensional. Empat Algoritma dilibatkan dalam eksperimen yang dilakukan, yaitu: Neural Network, Random Forest, kNN, dan Logistic Regression. Tiga algoritma pertama digunakan sebagai classifier pada level 0, sementara itu Logistic Regression digunakan classifier pada level 1 (meta classifier). Dengan kombinasi 4 algoritma tersebut, akurasi yang diperoleh adalah sebesar 98.7%, dan akurasi tersebut merupakan yang paling tinggi jika dibandingkan dengan masing-masing algoritma jika dieksekusi secara individual.