以评价诱发地震危险性为目的的断层识别:反排离散fit的新应用

IF 2.1 4区 工程技术 Q3 ENERGY & FUELS
D. Zeinabady, C. R. Clarkson, S. Razzaghi, S. Haqparast, A. L. Benson, M. Azad
{"title":"以评价诱发地震危险性为目的的断层识别:反排离散fit的新应用","authors":"D. Zeinabady, C. R. Clarkson, S. Razzaghi, S. Haqparast, A. L. Benson, M. Azad","doi":"10.2118/211100-pa","DOIUrl":null,"url":null,"abstract":"Summary The existence of faults, pre-existing hydraulic fractures, and depleted areas can negatively impact the development of unconventional reservoirs using multifractured horizontal wells (MFHWs). For example, the triggering of fault slippage through hydraulic fracturing can create the environmental hazard known as induced seismicity (earthquakes caused by hydraulic fracturing). A premium has therefore been placed on the development of technologies that can be used to identify the locations of fault systems (particularly if they are subseismic) as well as pre-existing hydraulic fractures and depleted areas. The objective of this study is to develop a diagnostic tool to identify these conditions using DFIT-FBA, a modified diagnostic fracture injection test (DFIT) with flowback analysis (FBA). The time and cost efficiencies of the DFIT-FBA method in reservoir characterization provides an opportunity to conduct multiple field tests at a single point or along the lateral section of a horizontal well. An analytical model that considers critical processes and mechanisms occurring during DFIT-FBA was first developed herein. The results of analytical modeling demonstrate that reservoir heterogeneities (i.e., faults) can be identified either by implementing multiple cycles of the DFIT-FBA method at a single point or by applying multiple DFIT-FBAs at different points along the lateral section of a horizontal well or at different wells. The analytical model is then verified using a fully coupled hydraulic fracture, reservoir, and wellbore simulator, and flowing pressure responses in the presence of a fault are illustrated. The practical application of the proposed method is demonstrated using DFIT-FBA field examples performed in a tight reservoir. Analysis of the field examples leads to the conclusion that a fault likely occurs near the toe of the horizontal lateral. This finding was confirmed by other field information and provides the opportunity to modify the main-stage hydraulic fracturing design to avoid induced seismicity events.","PeriodicalId":22066,"journal":{"name":"SPE Reservoir Evaluation & Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fault Identification for the Purposes of Evaluating the Risk of Induced Seismicity: A Novel Application of the Flowback DFIT\",\"authors\":\"D. Zeinabady, C. R. Clarkson, S. Razzaghi, S. Haqparast, A. L. Benson, M. Azad\",\"doi\":\"10.2118/211100-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The existence of faults, pre-existing hydraulic fractures, and depleted areas can negatively impact the development of unconventional reservoirs using multifractured horizontal wells (MFHWs). For example, the triggering of fault slippage through hydraulic fracturing can create the environmental hazard known as induced seismicity (earthquakes caused by hydraulic fracturing). A premium has therefore been placed on the development of technologies that can be used to identify the locations of fault systems (particularly if they are subseismic) as well as pre-existing hydraulic fractures and depleted areas. The objective of this study is to develop a diagnostic tool to identify these conditions using DFIT-FBA, a modified diagnostic fracture injection test (DFIT) with flowback analysis (FBA). The time and cost efficiencies of the DFIT-FBA method in reservoir characterization provides an opportunity to conduct multiple field tests at a single point or along the lateral section of a horizontal well. An analytical model that considers critical processes and mechanisms occurring during DFIT-FBA was first developed herein. The results of analytical modeling demonstrate that reservoir heterogeneities (i.e., faults) can be identified either by implementing multiple cycles of the DFIT-FBA method at a single point or by applying multiple DFIT-FBAs at different points along the lateral section of a horizontal well or at different wells. The analytical model is then verified using a fully coupled hydraulic fracture, reservoir, and wellbore simulator, and flowing pressure responses in the presence of a fault are illustrated. The practical application of the proposed method is demonstrated using DFIT-FBA field examples performed in a tight reservoir. Analysis of the field examples leads to the conclusion that a fault likely occurs near the toe of the horizontal lateral. This finding was confirmed by other field information and provides the opportunity to modify the main-stage hydraulic fracturing design to avoid induced seismicity events.\",\"PeriodicalId\":22066,\"journal\":{\"name\":\"SPE Reservoir Evaluation & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Reservoir Evaluation & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/211100-pa\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Reservoir Evaluation & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/211100-pa","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

断层、水力裂缝和枯竭区域的存在会对多缝水平井(MFHWs)非常规油藏的开发产生负面影响。例如,通过水力压裂触发断层滑动可能会造成被称为诱发地震活动(水力压裂引起的地震)的环境危害。因此,能够用于识别断层系统(特别是次地震断层)位置、预先存在的水力裂缝和枯竭区域的技术开发受到重视。本研究的目的是开发一种诊断工具来识别这些情况,使用DFIT-FBA,一种改进的诊断性压裂注入测试(DFIT)和反排分析(FBA)。DFIT-FBA方法在油藏描述中的时间和成本效益为在一个点或水平井的水平段进行多次现场测试提供了机会。本文首先建立了一个考虑DFIT-FBA过程中发生的关键过程和机制的分析模型。分析模型的结果表明,储层非均质性(即断层)可以通过在单点实施DFIT-FBA方法的多个循环来识别,也可以通过在水平井横向段的不同点或不同的井中应用多个DFIT-FBA来识别。然后使用全耦合水力裂缝、油藏和井筒模拟器对分析模型进行验证,并说明了存在故障时的流动压力响应。通过在致密储层中进行的DFIT-FBA现场实例,验证了该方法的实际应用。通过对现场实例的分析,得出在水平侧向的趾部附近可能存在断层的结论。这一发现得到了其他现场信息的证实,并为修改主级水力压裂设计提供了机会,以避免诱发地震活动事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Identification for the Purposes of Evaluating the Risk of Induced Seismicity: A Novel Application of the Flowback DFIT
Summary The existence of faults, pre-existing hydraulic fractures, and depleted areas can negatively impact the development of unconventional reservoirs using multifractured horizontal wells (MFHWs). For example, the triggering of fault slippage through hydraulic fracturing can create the environmental hazard known as induced seismicity (earthquakes caused by hydraulic fracturing). A premium has therefore been placed on the development of technologies that can be used to identify the locations of fault systems (particularly if they are subseismic) as well as pre-existing hydraulic fractures and depleted areas. The objective of this study is to develop a diagnostic tool to identify these conditions using DFIT-FBA, a modified diagnostic fracture injection test (DFIT) with flowback analysis (FBA). The time and cost efficiencies of the DFIT-FBA method in reservoir characterization provides an opportunity to conduct multiple field tests at a single point or along the lateral section of a horizontal well. An analytical model that considers critical processes and mechanisms occurring during DFIT-FBA was first developed herein. The results of analytical modeling demonstrate that reservoir heterogeneities (i.e., faults) can be identified either by implementing multiple cycles of the DFIT-FBA method at a single point or by applying multiple DFIT-FBAs at different points along the lateral section of a horizontal well or at different wells. The analytical model is then verified using a fully coupled hydraulic fracture, reservoir, and wellbore simulator, and flowing pressure responses in the presence of a fault are illustrated. The practical application of the proposed method is demonstrated using DFIT-FBA field examples performed in a tight reservoir. Analysis of the field examples leads to the conclusion that a fault likely occurs near the toe of the horizontal lateral. This finding was confirmed by other field information and provides the opportunity to modify the main-stage hydraulic fracturing design to avoid induced seismicity events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
68
审稿时长
12 months
期刊介绍: Covers the application of a wide range of topics, including reservoir characterization, geology and geophysics, core analysis, well logging, well testing, reservoir management, enhanced oil recovery, fluid mechanics, performance prediction, reservoir simulation, digital energy, uncertainty/risk assessment, information management, resource and reserve evaluation, portfolio/asset management, project valuation, and petroleum economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信