阿贝尔群的随机Cayley图的几何

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Jonathan Hermon, Sam Olesker-Taylor
{"title":"阿贝尔群的随机Cayley图的几何","authors":"Jonathan Hermon, Sam Olesker-Taylor","doi":"10.1214/22-aap1899","DOIUrl":null,"url":null,"abstract":"Consider the random Cayley graph of a finite Abelian group $G$ with respect to $k$ generators chosen uniformly at random, with $1 \\ll \\log k \\ll \\log |G|$. Draw a vertex $U \\sim \\operatorname{Unif}(G)$. We show that the graph distance $\\operatorname{dist}(\\mathsf{id},U)$ from the identity to $U$ concentrates at a particular value $M$, which is the minimal radius of a ball in $\\mathbb Z^k$ of cardinality at least $|G|$, under mild conditions. In other words, the distance from the identity for all but $o(|G|)$ of the elements of $G$ lies in the interval $[M - o(M), M + o(M)]$. In the regime $k \\gtrsim \\log |G|$, we show that the diameter of the graph is also asymptotically $M$. In the spirit of a conjecture of Aldous and Diaconis (1985), this $M$ depends only on $k$ and $|G|$, not on the algebraic structure of $G$. Write $d(G)$ for the minimal size of a generating subset of $G$. We prove that the order of the spectral gap is $|G|^{-2/k}$ when $k - d(G) \\asymp k$ and $|G|$ lies in a density-$1$ subset of $\\mathbb N$ or when $k - 2 d(G) \\asymp k$. This extends, for Abelian groups, a celebrated result of Alon and Roichman (1994). The aforementioned results all hold with high probability over the random Cayley graph.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"30 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Geometry of random Cayley graphs of Abelian groups\",\"authors\":\"Jonathan Hermon, Sam Olesker-Taylor\",\"doi\":\"10.1214/22-aap1899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the random Cayley graph of a finite Abelian group $G$ with respect to $k$ generators chosen uniformly at random, with $1 \\\\ll \\\\log k \\\\ll \\\\log |G|$. Draw a vertex $U \\\\sim \\\\operatorname{Unif}(G)$. We show that the graph distance $\\\\operatorname{dist}(\\\\mathsf{id},U)$ from the identity to $U$ concentrates at a particular value $M$, which is the minimal radius of a ball in $\\\\mathbb Z^k$ of cardinality at least $|G|$, under mild conditions. In other words, the distance from the identity for all but $o(|G|)$ of the elements of $G$ lies in the interval $[M - o(M), M + o(M)]$. In the regime $k \\\\gtrsim \\\\log |G|$, we show that the diameter of the graph is also asymptotically $M$. In the spirit of a conjecture of Aldous and Diaconis (1985), this $M$ depends only on $k$ and $|G|$, not on the algebraic structure of $G$. Write $d(G)$ for the minimal size of a generating subset of $G$. We prove that the order of the spectral gap is $|G|^{-2/k}$ when $k - d(G) \\\\asymp k$ and $|G|$ lies in a density-$1$ subset of $\\\\mathbb N$ or when $k - 2 d(G) \\\\asymp k$. This extends, for Abelian groups, a celebrated result of Alon and Roichman (1994). The aforementioned results all hold with high probability over the random Cayley graph.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1899\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1899","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

考虑一个有限阿贝尔群$G$的随机Cayley图,该群对$k$均匀随机选择的生成器有$1 \ll \log k \ll \log |G|$。画一个顶点$U \sim \operatorname{Unif}(G)$。我们证明,从恒等式到$U$的图距离$\operatorname{dist}(\mathsf{id},U)$集中在一个特定的值$M$,这是在温和条件下,基数至少$|G|$的球在$\mathbb Z^k$中的最小半径。换句话说,$G$中除$o(|G|)$之外的所有元素与恒等式的距离都在$[M - o(M), M + o(M)]$区间内。在$k \gtrsim \log |G|$区域,我们证明了图的直径也是渐近的$M$。根据Aldous和Diaconis(1985)猜想的精神,这个$M$只依赖于$k$和$|G|$,而不依赖于$G$的代数结构。为$G$生成子集的最小大小编写$d(G)$。我们证明当$k - d(G) \asymp k$和$|G|$位于$\mathbb N$的密度- $1$子集或$k - 2 d(G) \asymp k$时,谱隙的阶数为$|G|^{-2/k}$。对于阿贝尔群,这延伸了Alon和Roichman(1994)的著名结果。上述结果在随机Cayley图上都有高概率成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry of random Cayley graphs of Abelian groups
Consider the random Cayley graph of a finite Abelian group $G$ with respect to $k$ generators chosen uniformly at random, with $1 \ll \log k \ll \log |G|$. Draw a vertex $U \sim \operatorname{Unif}(G)$. We show that the graph distance $\operatorname{dist}(\mathsf{id},U)$ from the identity to $U$ concentrates at a particular value $M$, which is the minimal radius of a ball in $\mathbb Z^k$ of cardinality at least $|G|$, under mild conditions. In other words, the distance from the identity for all but $o(|G|)$ of the elements of $G$ lies in the interval $[M - o(M), M + o(M)]$. In the regime $k \gtrsim \log |G|$, we show that the diameter of the graph is also asymptotically $M$. In the spirit of a conjecture of Aldous and Diaconis (1985), this $M$ depends only on $k$ and $|G|$, not on the algebraic structure of $G$. Write $d(G)$ for the minimal size of a generating subset of $G$. We prove that the order of the spectral gap is $|G|^{-2/k}$ when $k - d(G) \asymp k$ and $|G|$ lies in a density-$1$ subset of $\mathbb N$ or when $k - 2 d(G) \asymp k$. This extends, for Abelian groups, a celebrated result of Alon and Roichman (1994). The aforementioned results all hold with high probability over the random Cayley graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信