kobo - andersen模型的水动力极限

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Assaf Shapira
{"title":"kobo - andersen模型的水动力极限","authors":"Assaf Shapira","doi":"10.1214/22-aap1898","DOIUrl":null,"url":null,"abstract":"This paper concerns with the hydrodynamic limit of the Kob–Andersen model, an interacting particle system that has been introduced by physicists in order to explain glassy behavior, and widely studied since. We will see that the density profile evolves in the hydrodynamic limit according to a nondegenerate hydrodynamic equation, and understand how the diffusion coefficient decays as density grows.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"2021 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hydrodynamic limit for the Kob–Andersen model\",\"authors\":\"Assaf Shapira\",\"doi\":\"10.1214/22-aap1898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns with the hydrodynamic limit of the Kob–Andersen model, an interacting particle system that has been introduced by physicists in order to explain glassy behavior, and widely studied since. We will see that the density profile evolves in the hydrodynamic limit according to a nondegenerate hydrodynamic equation, and understand how the diffusion coefficient decays as density grows.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"2021 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1898\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1898","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

本文关注的是kobo - andersen模型的流体动力极限,这是物理学家为了解释玻璃态行为而引入的一个相互作用的粒子系统,此后得到了广泛的研究。我们将根据非简并水动力方程看到密度分布在水动力极限内的演变,并了解扩散系数如何随着密度的增加而衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrodynamic limit for the Kob–Andersen model
This paper concerns with the hydrodynamic limit of the Kob–Andersen model, an interacting particle system that has been introduced by physicists in order to explain glassy behavior, and widely studied since. We will see that the density profile evolves in the hydrodynamic limit according to a nondegenerate hydrodynamic equation, and understand how the diffusion coefficient decays as density grows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信