{"title":"罗马{2}在图和图产品中的统治","authors":"Faezeh Alizade, Hamid Reza Maimani, Leila Parsaei Majd, Mina Rajabi Parsa","doi":"10.61186/ijmsi.18.2.117","DOIUrl":null,"url":null,"abstract":"For a graph $G=(V,E)$ of order $n$, a Roman $\\{2\\}$-dominating function $f:V\\rightarrow\\{0,1,2\\}$ has the property that for every vertex $v\\in V$ with $f(v)=0$, either $v$ is adjacent to a vertex assigned $2$ under $f$, or $v$ is adjacent to least two vertices assigned $1$ under $f$. In this paper, we classify all graphs with Roman $\\{2\\}$-domination number belonging to the set $\\{2,3,4,n-2,n-1,n\\}$. Furthermore, we obtain some results about Roman $\\{2\\}$-domination number of some graph operations.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":"12 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Roman {2}-domination in Graphs and Graph Products\",\"authors\":\"Faezeh Alizade, Hamid Reza Maimani, Leila Parsaei Majd, Mina Rajabi Parsa\",\"doi\":\"10.61186/ijmsi.18.2.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph $G=(V,E)$ of order $n$, a Roman $\\\\{2\\\\}$-dominating function $f:V\\\\rightarrow\\\\{0,1,2\\\\}$ has the property that for every vertex $v\\\\in V$ with $f(v)=0$, either $v$ is adjacent to a vertex assigned $2$ under $f$, or $v$ is adjacent to least two vertices assigned $1$ under $f$. In this paper, we classify all graphs with Roman $\\\\{2\\\\}$-domination number belonging to the set $\\\\{2,3,4,n-2,n-1,n\\\\}$. Furthermore, we obtain some results about Roman $\\\\{2\\\\}$-domination number of some graph operations.\",\"PeriodicalId\":43670,\"journal\":{\"name\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61186/ijmsi.18.2.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/ijmsi.18.2.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
For a graph $G=(V,E)$ of order $n$, a Roman $\{2\}$-dominating function $f:V\rightarrow\{0,1,2\}$ has the property that for every vertex $v\in V$ with $f(v)=0$, either $v$ is adjacent to a vertex assigned $2$ under $f$, or $v$ is adjacent to least two vertices assigned $1$ under $f$. In this paper, we classify all graphs with Roman $\{2\}$-domination number belonging to the set $\{2,3,4,n-2,n-1,n\}$. Furthermore, we obtain some results about Roman $\{2\}$-domination number of some graph operations.