{"title":"带乘性噪声的二维Swift-Hohenberg方程的随机吸引子分岔","authors":"Qingkun Xiao, Hongjun Gao","doi":"10.58997/ejde.2023.20","DOIUrl":null,"url":null,"abstract":"This article concerns the dynamical transitions of the stochastic Swift-Hohenberg equation with multiplicative noise on a two-dimensional domain (-L,L) times (-L, L). With α and L regarded as parameters, we show that the approximate reduced system corresponding to the invariant manifold undergoes a stochastic pitchfork bifurcation near the critical points, and the impact of noise on stochastic bifurcation of the Swift-Hohenberg equation. We find the approximation representation of the manifold and the corresponding reduced systems for stochastic Swift-Hohenberg equation when L2 and √2L1 are close together.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":"27 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic attractor bifurcation for the two-dimensional Swift-Hohenberg equation with multiplicative noise\",\"authors\":\"Qingkun Xiao, Hongjun Gao\",\"doi\":\"10.58997/ejde.2023.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article concerns the dynamical transitions of the stochastic Swift-Hohenberg equation with multiplicative noise on a two-dimensional domain (-L,L) times (-L, L). With α and L regarded as parameters, we show that the approximate reduced system corresponding to the invariant manifold undergoes a stochastic pitchfork bifurcation near the critical points, and the impact of noise on stochastic bifurcation of the Swift-Hohenberg equation. We find the approximation representation of the manifold and the corresponding reduced systems for stochastic Swift-Hohenberg equation when L2 and √2L1 are close together.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.20\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58997/ejde.2023.20","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stochastic attractor bifurcation for the two-dimensional Swift-Hohenberg equation with multiplicative noise
This article concerns the dynamical transitions of the stochastic Swift-Hohenberg equation with multiplicative noise on a two-dimensional domain (-L,L) times (-L, L). With α and L regarded as parameters, we show that the approximate reduced system corresponding to the invariant manifold undergoes a stochastic pitchfork bifurcation near the critical points, and the impact of noise on stochastic bifurcation of the Swift-Hohenberg equation. We find the approximation representation of the manifold and the corresponding reduced systems for stochastic Swift-Hohenberg equation when L2 and √2L1 are close together.
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.