Saeed Izadi, Jan Zanger, Martina Baggio, Hannah Seliger-Ost, Peter Kutne, Manfred Aigner
{"title":"过热液体燃料喷射对稀预混火焰燃烧特性影响的实验研究","authors":"Saeed Izadi, Jan Zanger, Martina Baggio, Hannah Seliger-Ost, Peter Kutne, Manfred Aigner","doi":"10.1115/1.4063772","DOIUrl":null,"url":null,"abstract":"Abstract The effect of superheated liquid fuel injection on the performance and emissions of a single nozzle combustor was investigated. Combustion of the lean premixed flames was achieved using a combination of jet and swirl as a stabilization method. In a non-reactive setup, the optimum transition temperature of Jet A-1 fuel from liquid to superheated vaporized state was analyzed. In a subsequent reactive setup, a series of tests were conducted with the liquid fuel at low and elevated temperatures. The experiments were conducted at ambient pressure and various air and fuel preheat temperatures, axial swirlers, thermal powers, adiabatic flame temperatures, and flame tube diameters. Concentrations of nitric oxide (NOx) and carbon monoxide (CO) in the flue gas were measured. The results showed that the adiabatic flame temperature caused the most significant change in combustion emissions and the position and shape of the reaction zone, while the superheated fuel injection had only a minor effect because the liquid fuel droplets were largely vaporized before entering the reaction zone through the integration of a swirler and a prefilmer. The use of the axial swirler and prefilmer allowed the combustor to operate in both spray and fully vaporized fuel conditions. As a result, very low emission concentrations of NOx (~5 ppm) and CO (~6 ppm) were achieved. The median flame length and height above the burner of the characterized flames showed competitive values of 32 and 50 mm, respectively. Lean blowout limits of less than 1500 K were achieved.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of the Effect of Superheated Liquid Fuel Injection On the Combustion Characteristics of Lean Premixed Flames\",\"authors\":\"Saeed Izadi, Jan Zanger, Martina Baggio, Hannah Seliger-Ost, Peter Kutne, Manfred Aigner\",\"doi\":\"10.1115/1.4063772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The effect of superheated liquid fuel injection on the performance and emissions of a single nozzle combustor was investigated. Combustion of the lean premixed flames was achieved using a combination of jet and swirl as a stabilization method. In a non-reactive setup, the optimum transition temperature of Jet A-1 fuel from liquid to superheated vaporized state was analyzed. In a subsequent reactive setup, a series of tests were conducted with the liquid fuel at low and elevated temperatures. The experiments were conducted at ambient pressure and various air and fuel preheat temperatures, axial swirlers, thermal powers, adiabatic flame temperatures, and flame tube diameters. Concentrations of nitric oxide (NOx) and carbon monoxide (CO) in the flue gas were measured. The results showed that the adiabatic flame temperature caused the most significant change in combustion emissions and the position and shape of the reaction zone, while the superheated fuel injection had only a minor effect because the liquid fuel droplets were largely vaporized before entering the reaction zone through the integration of a swirler and a prefilmer. The use of the axial swirler and prefilmer allowed the combustor to operate in both spray and fully vaporized fuel conditions. As a result, very low emission concentrations of NOx (~5 ppm) and CO (~6 ppm) were achieved. The median flame length and height above the burner of the characterized flames showed competitive values of 32 and 50 mm, respectively. Lean blowout limits of less than 1500 K were achieved.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063772\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063772","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental Investigation of the Effect of Superheated Liquid Fuel Injection On the Combustion Characteristics of Lean Premixed Flames
Abstract The effect of superheated liquid fuel injection on the performance and emissions of a single nozzle combustor was investigated. Combustion of the lean premixed flames was achieved using a combination of jet and swirl as a stabilization method. In a non-reactive setup, the optimum transition temperature of Jet A-1 fuel from liquid to superheated vaporized state was analyzed. In a subsequent reactive setup, a series of tests were conducted with the liquid fuel at low and elevated temperatures. The experiments were conducted at ambient pressure and various air and fuel preheat temperatures, axial swirlers, thermal powers, adiabatic flame temperatures, and flame tube diameters. Concentrations of nitric oxide (NOx) and carbon monoxide (CO) in the flue gas were measured. The results showed that the adiabatic flame temperature caused the most significant change in combustion emissions and the position and shape of the reaction zone, while the superheated fuel injection had only a minor effect because the liquid fuel droplets were largely vaporized before entering the reaction zone through the integration of a swirler and a prefilmer. The use of the axial swirler and prefilmer allowed the combustor to operate in both spray and fully vaporized fuel conditions. As a result, very low emission concentrations of NOx (~5 ppm) and CO (~6 ppm) were achieved. The median flame length and height above the burner of the characterized flames showed competitive values of 32 and 50 mm, respectively. Lean blowout limits of less than 1500 K were achieved.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.